Control Techniques
FOR
Complex Networks

Sean Meyn
Preface

A representative of a major publishing house is on her way home from a conference in Singapore, excited about the possibility of a new book series. On the flight home to New York she opens her blackberry organizer, adding names of new contacts, and is disappointed to realize she may have caught the bug that was bothering her friend Alex at the café near the conference hotel. When she returns home she will send Alex an email to see how she’s doing, and make sure this isn’t a case of some new dangerous flu.

Of course, the publisher is aware that she is part of an interconnected network of other business men and women and their clients: Her value as an employee depends on these connections. She depends on the transportation network of taxis and airplanes to get her job done, and is grateful for the most famous network today that allows her to contact her friend effortlessly even when separated by thousands of miles. Other networks of even greater importance escape her consciousness, even though consciousness itself depends on a highly interconnected fabric of neurons and vascular tissue. Communication networks are critical to support the air traffic controllers who manage the airspace around her. A supply chain of manufacturers make her book business possible, as well as the existence of the airplane on which she is flying.

Complex networks are everywhere. Interconnectedness is as important to business men and women as it is to the viruses who travel along with them.

Much of the current interest in networks within physics and the biological sciences is phenomenological. For example, given a certain degree of connectivity between individuals, what is the likelihood that a virus will spread to the extinction of the planet? Degree and mode of connectivity in passive agents can combine to form images resembling crystals or snowflakes [463].

The main focus within our own bodies is far more utilitarian. Endocrine, immune, and vascular systems adjust chemical reactions to maintain equilibria in the face of ongoing attacks from disease and diet. In biology this is called homeostasis. In this book, the regulation of a network is called control.

It is not our goal to take on biology, computer science, communications, and operations research in a single volume. Rather, the intended purpose of this book is an introduction to a rapidly evolving engineering discipline. The examples come from applications where complexity is real, but less daunting than found in the human brain. We describe methods to model networks in order to capture essential structure, dynamics, and uncertainty. Based on these models we explore ways to visualize network behavior so that effective control techniques can be synthesized and evaluated.
Modeling and control The operator of an electric power grid hopes to find a network model that will help form predictions of supply and demand to maintain stability of the power network. This requires the expertise of statisticians, economists, and power engineers. The resulting model may provide useful simulations for forecasting, but will fail entirely for our purposes. This book is about control, and for this it is necessary to restrict to models that capture essential behavior, but no more.

Modeling for the purposes of control and the development of control techniques for truly complex networks has become a major research activity over the past two decades. Breakthroughs obtained in the stochastic networks community provide important tools that have had real impact in some application areas, such as the implementation of MaxWeight scheduling for routing and scheduling in communications. Other breakthroughs have had less impact due in part to the highly technical and mathematical language in which the theory has developed. The goal of this book is to expose these ideas in the simplest possible setting.

Most of the ideas in this book revolve around a few concepts.

(i) The fluid model is an idealized deterministic model. In a communication network a unit of ‘fluid’ corresponds to some quantities of packets; in a power network this might correspond to a certain number of megawatts of electricity.

A fluid model is often a starting point to understand the impact of topology, processing rates, and external arrivals on network behavior. Based on the fluid model we can expose the inherent conflict between short-sighted control objectives, longer-range issues such as recovery from a singular external disruption, and truly long-range planning such as the design of appropriate network topology.

(ii) Refinements of the fluid model are developed to capture variability in supply, demand, or processing rates. The controlled random walk model favored in this book is again a highly stylized model of any real network, but contains enough structure to give a great deal of insight, and is simple enough to be tractable for developing control techniques.

For example, this model provides a vehicle for constructing and evaluating hedging mechanisms to limit exposure to high costs, and to ensure that valuable resources can operate when needed.

(iii) The concept of workload is developed for the deterministic and stochastic models. Perhaps the most important concept in this book is the workload relaxation that provides approximations of a highly complex network by a far simpler one. The approximation may be crude in some cases, but its value in attaining intuition can be outstanding.

(iv) Methods from the stability theory of Markov models form a foundation in the treatment of stochastic network models. Lyapunov functions are a basis of dynamic programming equations for optimization, for stability and analysis, and even for developing algorithms based on simulation.
What’s in here? The book is divided into three parts. The first part entitled \textit{modeling and control} contains numerous examples to illustrate some of the basic concepts developed in the book, especially those topics listed in (i) and (ii) concerning the fluid and CRW models. Lyapunov functions and the dynamic programming equations are introduced; Based on these concepts we arrive at the MaxWeight policy along with many generalizations.

Workload relaxations are introduced in Part II. In these three chapters we show how a cost function defined for the network can be ‘projected’ to define the \textit{effective cost} for the relaxation. Applications to control involve first constructing a policy for the low-dimensional relaxation, and then translating this to the original physical system of interest. This translation step involves the introduction of hedging to guard against variability.

Most of the control techniques are contained in the first two parts of the book. Part III entitled \textit{Stability & Performance} contains an in-depth treatment of Lyapunov stability theory and optimization. It contains approximation techniques to explain the apparent solidarity between control solutions for stochastic and deterministic network models. Moreover, this part of the book develops several approaches to performance evaluation for stochastic network models.

Who’s it for? The book was created for several audiences. The gradual development of network concepts in Parts I and II was written with the first-year graduate student in mind. This reader may have had little exposure to operations research concepts, but some prior exposure to stochastic processes and linear algebra at the undergraduate level.

Many of the topics in the latter chapters are at the frontier of stochastic networks, optimization, simulation and learning. This material is intended for the more advanced graduate student, as well as researchers and practitioners in any of these areas.

Acknowledgements This book has been in the making for five years and over this time has drawn inspiration and feedback from many. Some of the ideas were developed in conjunction with students, including Mike Chen, Richard Dubrawski, Charuhas Pandit, Rong-Rong Chen, and David Eng. In particular, the numerics in Section 7.2 are largely taken from Dubrawski’s thesis [153], and the \textit{diffusion heuristic} for hedging is based on a paper with Chen and Pandit [106]. Section 9.6 is based in part on research conducted with Chen [107].

My collaborators are a source of inspiration and friendship. Many of the ideas in this book revolve around stochastic Lyapunov theory for Markov processes that is summarized in the appendix. This appendix is essentially an abridged version of my book co-authored with Richard Tweedie [367]. Vivek Borkar’s research on Markov decision theory (as summarized in [74]) has had a significant influence on my own view of optimization. My interest in networks was sparked by a lecture presented by P.R. Kumar when he was visiting the Australian National University in 1988 while I resided there as a postdoctoral fellow. He became a mentor and a coauthor when I joined the University of Illinois the following year. I learned of the beauty of simulation theory
from the work of Peter Glynn and his former student Shane Henderson. More recent collaborators are Profs. In-Koo Cho, David Gamarnik, Ioannis Kontoyiannis, and Eric Moulines, who have provided inspiration on a broad range of topics. I am grateful to Devavrat Shah and Damon Wischik for sharing insights on the “input-queued switch”, and for allowing me to adapt a figure from their paper [435] that is used to illustrate workload relaxations in Section 6.7.1. Pierre L’Ecuyer shared his notes on simulation from his course at the University of Montréal, and Bruce Hajek at the University of Illinois shared his lecture notes on communication networks.

Profs. Cho, Kontoyiannis, Henderson, and Shah have all suggested improvements on exposition, or warned of typos. Sumit Bhardwaj, Jinjing Jiang, Shie Mannor, Eric Moulines, and Michael Veatch each spent significant hours pouring through selected chapters of draft text and provided valuable feedback. Early input by Veatch moved the book towards its present organization with engineering techniques introduced first, and harder mathematics postponed to later chapters.

Any remaining errors or awkward prose are, of course, my own.

It would be impossible to write a book like this without financial support for graduate students and release-time for research. I am sincerely grateful to the National Science Foundation, in particular the Division of Electrical, Communications & Cyber Systems, for on-going support during the writing of this book. The DARPA ITMANET initiative, the Laboratory for Information and Decision Systems at MIT, and United Technologies Research Center provided support in the final stages of this project during the 2006-2007 academic year.

Equally important has been support from my family, especially during the last months when I have been living away from home. Thank you Belinda! Thank you Sydney and Sophie! And thanks also to all the poodles at South Harding Drive.

Dedication

It was a sad day on June 7, 2001 when Richard Tweedie died at the peak of his career. A brief survey of his contributions to applied probability and statistics can be found in [156].

In memory of his friendship and collaboration, and in honor of his many contributions to our scientific communities, this book is dedicated to Richard.
Contents

Preface 2

1 Introduction 10
 1.1 Networks in practice ... 11
 1.2 Mathematical models .. 16
 1.3 What do you need to know to read this book? 20
 1.4 Notes ... 32

I Modeling & Control 34

2 Examples 35
 2.1 Modeling the single server queue 35
 2.2 Klimov model .. 41
 2.3 Capacity and queueing in communication systems 44
 2.4 Multiple-access communication 44
 2.5 Processor sharing model .. 46
 2.6 Inventory model ... 47
 2.7 Power transmission network 47
 2.8 Simple re-entrant line .. 49
 2.9 Contention for resources and instability 53
 2.10 Routing model .. 56
 2.11 Braess’ paradox .. 59
 2.12 Notes ... 61

3 The Single Server Queue 62
 3.1 Representations .. 65
 3.2 Approximations ... 68
 3.3 Stability .. 72
 3.4 Invariance equations .. 77
 3.5 Big queues ... 87
 3.6 Model selection .. 92
 3.7 Notes ... 94
 3.8 Exercises .. 95
Scheduling

4.1 Controlled random-walk model ... 101
4.2 Fluid model ... 109
4.3 Control techniques for the fluid model 116
4.4 Comparing fluid and stochastic models 128
4.5 Structure of optimal policies .. 133
4.6 Safety-stocks ... 136
4.7 Discrete review ... 142
4.8 MaxWeight and MinDrift ... 145
4.9 Perturbed value function ... 148
4.10 Notes .. 152
4.11 Exercises ... 154

Workload

II Workload ... 158

5 Workload & Scheduling .. 159
5.1 Single server queue ... 160
5.2 Workload for the CRW scheduling model 163
5.3 Relaxations for the fluid model 167
5.4 Stochastic workload models .. 189
5.5 Pathwise optimality and workload 194
5.6 Hedging in networks ... 199
5.7 Notes .. 209
5.8 Exercises ... 211

6 Routing & Resource Pooling .. 213
6.1 Workload in general models .. 216
6.2 Resource pooling .. 223
6.3 Routing and workload .. 227
6.4 MaxWeight for routing and scheduling 233
6.5 Simultaneous resource possession 236
6.6 Workload relaxations ... 239
6.7 Relaxations and policy synthesis for stochastic models 253
6.8 Notes .. 261
6.9 Exercises ... 263

Demand

7 Demand ... 266
7.1 Network models .. 269
7.2 Transients ... 274
7.3 Workload relaxations ... 287
7.4 Hedging in a simple inventory model 295
7.5 Hedging in networks .. 301
7.6 Summary of steady-state control techniques 312
7.7 Notes .. 314
III Stability & Performance

8 Foster-Lyapunov Techniques

- 8.1 Lyapunov functions
- 8.2 Lyapunov functions for networks
- 8.3 Discrete-review
- 8.4 MaxWeight
- 8.5 MaxWeight and the average-cost optimality equation
- 8.6 Linear programs for performance bounds
- 8.7 Brownian workload model
- 8.8 Notes
- 8.9 Exercises

9 Optimization

- 9.1 Reachability and decomposibility
- 9.2 Linear programming formulations
- 9.3 Multi-objective optimization
- 9.4 Optimality equations
- 9.5 Algorithms
- 9.6 Optimization in networks
- 9.7 One dimensional inventory model
- 9.8 Hedging and workload
- 9.9 Notes
- 9.10 Exercises

10 ODE methods

- 10.1 Examples
- 10.2 Mathematical preliminaries
- 10.3 Fluid limit model
- 10.4 Fluid-scale stability
- 10.5 Safety stocks and trajectory tracking
- 10.6 Fluid-scale asymptotic optimality
- 10.7 Brownian workload model
- 10.8 Notes
- 10.9 Exercises

11 Simulation & Learning

- 11.1 Deciding when to stop
- 11.2 Asymptotic theory for Markov models
- 11.3 The single server queue
- 11.4 Control variates and shadow functions
- 11.5 Estimating a value function
- 11.6 Notes
11.7 Exercises ... 534

A Markov Models .. 538
 A.1 Every process is (almost) Markov 538
 A.2 Generators and value functions 540
 A.3 Equilibrium equations 543
 A.4 Criteria for stability 552
 A.5 Ergodic theorems and coupling 560
 A.6 Converse theorems 568

List of Figures ... 572

References .. 576

Index .. 611
Appendix A

Markov Models

This appendix describes stability theory and ergodic theory for Markov chains on a countable state space that provides foundations for the development in Part III of this book. It is distilled from Meyn and Tweedie [367], which contains an extensive bibliography (the monograph [367] is now available on-line.)

The term “chain” refers to the assumption that the time-parameter is discrete. The Markov chains that we consider evolve on a countable state space, denoted X, with transition law defined as follows,

$$P(x, y) := \mathbb{P}\{X(t + 1) = y \mid X(t) = x\} \quad x, y \in \mathbb{X}, \ t = 0, 1, \ldots.$$

The presentation is designed to allow generalization to more complex general state space chains as well as reflected Brownian motion models.

Since the publication of [367] there has been a great deal of progress on the theory of geometrically ergodic Markov chains, especially in the context of Large Deviations theory. See Kontoyiannis et al. [312, 313, 311] and Meyn [364] for some recent results. The website [444] also contains on-line surveys on Markov and Brownian models.

A.1 Every process is (almost) Markov

Why do we focus so much attention on Markov chain models? An easy response is to cite the powerful analytical techniques available, such as the operator-theoretic techniques surveyed in this appendix. A more practical reply is that most processes can be approximated by a Markov chain.

Consider the following example: Z is a stationary stochastic process on the non-negative integers. A Markov chain can be constructed that has the same steady-state behavior, and similar short-term statistics. Specifically, define the probability measure on $\mathbb{Z}_+ \times \mathbb{Z}_+$ via,

$$\Pi(z_0, z_1) = \mathbb{P}\{Z(t) = z_0, Z(t + 1) = z_1\}, \quad z_0, z_1 \in \mathbb{Z}_+.$$

Note that Π captures the steady-state behavior by construction. By considering the distribution of the pair $(Z(t), Z(t + 1))$ we also capture some of the dynamics of Z.

538
The first and second marginals of Π agree, and are denoted π,

$$\pi(z_0) = P\{Z(t) = z_0\} = \sum_{z_1 \in \mathbb{Z}_+} \Pi(z_0, z_1), \quad z_0, z_1 \in \mathbb{Z}_+.$$

The transition matrix for the approximating process is defined as the ratio,

$$P(z_0, z_1) = \frac{\Pi(z_0, z_1)}{\pi(z_0)}, \quad z_0, z_1 \in X,$$

with $X = \{z \in \mathbb{Z}_+ : \pi(z) > 0\}$.

The following simple result is established in Chorin [11], but the origins are undoubtedly ancient. It is a component of the model reduction techniques pioneered by Mori and Zwanzig in the area of statistical mechanics [375, 505].

Proposition A.1.1. The transition matrix P describes these aspects of the stationary process Z:

(i) One-step dynamics: $P(z_0, z_1) = P\{Z(t+1) = z_1 \mid Z(t) = z_0\}, z_0, z_1 \in X$.

(ii) Steady-state: The probability π is invariant for P,

$$\pi(z_1) = \sum_{z_0 \in X} \pi(z_0) P(z_0, z_1), \quad z_1, \in X.$$

Proof. Part (i) is simply Baye’s rule

$$P\{Z(t+1) = z_1 \mid Z(t) = z_0\} = \frac{P\{Z(t+1) = z_1, Z(t) = z_0\}}{P\{Z(t) = z_0\}} = \frac{\Pi(z_0, z_1)}{\pi(z_0)}.$$

The definition of P gives $\pi(z_0) P(z_0, z_1) = \Pi(z_0, z_1)$, and stationarity of Z implies that $\sum_{z_0} \pi(z_0) P(z_0, z_1) = \sum_{z_0} \Pi(z_0, z_1) = \pi(z_1)$, which is (ii). \qed

Proposition A.1.1 is just one approach to approximation. If Z is not stationary, an alternative is to redefine Π as the limit,

$$\Pi(z_0, z_1) = \lim_{N \to \infty} \frac{1}{N} \sum_{t=0}^{N-1} P\{Z(t) = z_0, Z(t+1) = z_1\},$$

assuming this exists for each $z_0, z_1 \in \mathbb{Z}_+$. Similar ideas are used in Section 9.2.2 to prove that an optimal policy for a controlled Markov chain can be taken stationary without loss of generality.

Another common technique is to add some history to Z via,

$$X(t) := [Z(t), Z(t-1), \ldots, Z(t-n_0)],$$

where $n_0 \in [1, \infty]$ is fixed. If $n_0 = \infty$ then we are including the entire history, and in this case X is Markov: For any possible value x_1 of $X(t+1)$,

$$P\{X(t+1) = x_1 \mid X(t), X(t-1), \ldots\} = P\{X(t+1) = x_1 \mid X(t)\}$$
A.2 Generators and value functions

The main focus of the Appendix is performance evaluation, where performance is defined in terms of a cost function $c : X \rightarrow \mathbb{R}_+$. For a Markov model there are several performance criteria that are well-motivated and are also conveniently analyzed using tools from the general theory of Markov chains:

Discounted cost For a given discount-parameter $\gamma > 0$, recall that the discounted-cost value function is defined as the sum,

$$h_\gamma(x) := \sum_{t=0}^{\infty} (1 + \gamma)^{-t-1} \mathbb{E}_x[c(X(t))], \quad X(0) = x \in X. \quad (A.1)$$

Recall from (1.18) that the expectations in (A.1) can be expressed in terms of the t-step transition matrix via,

$$\mathbb{E}[c(X(t)) \mid X(0) = x] = P^t c(x), \quad x \in X, \ t \geq 0.$$

Consequently, denoting the *resolvent* by

$$R_\gamma = \sum_{t=0}^{\infty} (1 + \gamma)^{-t-1} P^t, \quad (A.2)$$

the value function (A.1) can be expressed as the “matrix-vector product”,

$$h_\gamma(x) = R_\gamma c(x) := \sum_{y \in X} R_\gamma(x, y) c(y), \quad x \in X.$$

Based on this representation, it is not difficult to verify the following dynamic programming equation. The discounted-cost value function solves

$$\mathcal{D} h_\gamma = -c + \gamma h_\gamma, \quad (A.3)$$

where the *generator* \mathcal{D} is defined as the difference operator,

$$\mathcal{D} = P - I. \quad (A.4)$$

The dynamic programming equation (A.3) is a first step in the development of dynamic programming for controlled Markov chains contained in Chapter 9.

Average cost The average cost is the limit supremum of the Cesaro-averages,

$$\eta_x := \limsup_{r \to \infty} \frac{1}{r} \sum_{t=0}^{r-1} \mathbb{E}_x[c(X(t))], \quad X(0) = x \in X.$$

A probability measure is called invariant if it satisfies the invariance equation,
\[
\sum_{y \in X} \pi(x) D(x, y) = 0, \quad x \in X,
\] (A.5)

Under mild stability and irreducibility assumptions we find that the average cost coincides with the spatial average \(\pi(c) = \sum_{x'} \pi(x') c(x') \) for each initial condition. Under these conditions the limit supremum in the definition of the average cost becomes a limit, and it is also the limit of the normalized discounted cost for vanishing discount-rate,

\[
\eta_x = \pi(c) = \lim_{r \to \infty} \frac{1}{r} \sum_{t=0}^{r-1} \mathbb{E}_x [c(X(t))] = \lim_{\gamma \downarrow 0} \gamma h_\gamma(x). \quad (A.6)
\]

In a queueing network model the following \(x^*-\text{irreducibility} \) assumption frequently holds with \(x^* \in X \) taken to represent a network free of customers.

Definition A.2.1. Irreducibility

The Markov chain \(X \) is called

(i) \(x^*-\text{Irreducible} \) if \(x^* \in X \) satisfies for one (and hence any) \(\gamma > 0 \),

\[
R_\gamma(x, x^*) > 0 \quad \text{for each } x \in X.
\]

(ii) The chain is simply called \(\text{irreducible} \) if it is \(x^*-\text{irreducible} \) for each \(x^* \in X \).

(iii) A \(x^*-\text{irreducible} \) chain is called \(\text{aperiodic} \) if there exists \(n_0 < \infty \) such that \(P^n(x^*, x^*) > 0 \) for all \(n \geq n_0 \).

When the chain is \(x^*-\text{irreducible} \), we find that the most convenient sample path representations of \(\eta \) are expressed with respect to the first return time \(\tau_{x^*} \) to the fixed state \(x^* \in X \). From Proposition A.3.1 we find that \(\eta \) is independent of \(x \) within the support of \(\pi \), and has the form,

\[
\eta = \pi(c) = \left(\mathbb{E}_{x^*} [\tau_{x^*}] \right)^{-1} \mathbb{E}_{x^*} \left[\sum_{t=0}^{\tau_{x^*}-1} c(X(t)) \right]. \quad (A.7)
\]

Considering the function \(c(x) = 1\{x \neq x^*\} \) gives,

Theorem A.2.1. (Kac's Theorem) If \(X \) is \(x^*-\text{irreducible} \) then it is positive recurrent if and only if \(\mathbb{E}_{x^*} [\tau_{x^*}] < \infty \). If positive recurrence holds, then letting \(\pi \) denote the invariant measure for \(X \), we have

\[
\pi(x^*) = (\mathbb{E}_{x^*} [\tau_{x^*}])^{-1}. \quad (A.8)
\]
Total cost and Poisson’s equation For a given function $c: \mathbb{X} \to \mathbb{R}$ with steady state mean η, denote the centered function by $\tilde{c} = c - \eta$. Poisson’s equation can be expressed,

$$\mathcal{D}h = -\tilde{c} \quad \text{(A.9)}$$

The function c is called the forcing function, and a solution $h: \mathbb{X} \to \mathbb{R}$ is known as a relative value function. Poisson’s equation can be regarded as a dynamic programming equation; Note the similarity between (A.9) and (A.3).

Under the x^*-irreducibility assumption we have various representations of the relative value function. One formula is similar to the definition (A.6):

$$h(x) = \lim_{\gamma \downarrow 0} (h_\gamma(x) - h_\gamma(x^*)) \quad x \in \mathbb{X}. \quad \text{(A.10)}$$

Alternatively, we have a sample path representation similar to (A.7),

$$h(x) = \mathbb{E}_x \left[\sum_{t=0}^{\tau_{x^*}-1} (c(X(t)) - \eta) \right], \quad x \in \mathbb{X}. \quad \text{(A.11)}$$

This appendix contains a self-contained treatment of Lyapunov criteria for stability of Markov chains to validate formulae such as (A.11). A central result known as the Comparison Theorem is used to obtain bounds on η or any of the value functions described above.

These stability criteria are all couched in terms of the generator for \mathbb{X}. The most basic criterion is known as condition (V3): for a function $V: \mathbb{X} \to \mathbb{R}_+$, a function $f: \mathbb{X} \to [1, \infty)$, a constant $b < \infty$, and a finite set $S \subset \mathbb{X}$,

$$\mathcal{D}V(x) \leq -f(x) + b 1_S(x), \quad x \in \mathbb{X}, \quad \text{(V3)}$$

or equivalently,

$$\mathbb{E}[V(X(t+1)) - V(X(t)) \mid X(t) = x] \leq \begin{cases} -f(x) & x \in S^c \\ -f(x) + b & x \in S. \end{cases} \quad \text{(A.12)}$$

Under this Lyapunov drift condition we obtain various ergodic theorems in Section A.5. The main results are summarized as follows:

Theorem A.2.2. Suppose that \mathbb{X} is x^*-irreducible and aperiodic, and that there exists $V: \mathbb{X} \to (0, \infty)$, $f: \mathbb{X} \to [1, \infty)$, a finite set $S \subset \mathbb{X}$, and $b < \infty$ such that Condition (V3) holds. Suppose moreover that the cost function $c: \mathbb{X} \to \mathbb{R}_+$ satisfies $\|c\|_f := \sup_{x \in \mathbb{X}} c(x)/f(x) \leq 1$.

Then, there exists a unique invariant measure π satisfying $\eta = \pi(c) \leq b$, and the following hold:

1. **Strong Law of Large Numbers:** For each initial condition, $\frac{1}{n} \sum_{t=0}^{n-1} c(X(t)) \to \eta \quad a.s.$ as $n \to \infty$.

(ii) Mean Ergodic Theorem: For each initial condition, $E_x[c(X(t))] \to \eta$ as $t \to \infty$.

(iii) Discounted-cost value function h_γ: Satisfies the uniform upper bound,

$$h_\gamma(x) \leq V(x) + b\gamma^{-1}, \quad x \in X.$$

(iv) Poisson’s equation h: Satisfies, for some $b_1 < \infty$,

$$|h(x) - h(y)| \leq V(x) + V(y) + b_1, \quad x, y \in X.$$

\square

Proof. The Law of Large numbers is given in Theorem A.5.8, and the Mean Ergodic Theorem is established in Theorem A.5.4 based on coupling X with a stationary version of the chain.

The bound $\eta \leq b$ along with the bounds on h and h_γ are given in Theorem A.4.5. \square

These results are refined elsewhere in the book in the construction and analysis of algorithms to bound or approximate performance in network models.

A.3 Equilibrium equations

In this section we consider in greater detail representations for π and h, and begin to discuss existence and uniqueness of solutions to equilibrium equations.

A.3.1 Representations

Solving either equation (A.5) or (A.9) amounts to a form of inversion, but there are two difficulties. One is that the matrices to be inverted may not be finite dimensional. The other is that these matrices are never invertable! For example, to solve Poisson’s equation (A.9) it appears that we must invert D. However, the function f which is identically equal to one satisfies $D f \equiv 0$. This means that the null-space of D is non-trivial, which rules out invertibility.

On iterating the formula $P h = h - \tilde{c}$ we obtain the sequence of identities,

$$P^2 h = h - \tilde{c} - P\tilde{c} \quad \Rightarrow \quad P^3 h = h - \tilde{c} - P\tilde{c} - P^2\tilde{c} \quad \Rightarrow \quad \cdots.$$

Consequently, one might expect a solution to take the form,

$$h = \sum_{i=0}^{\infty} P^i \tilde{c}. \quad \text{(A.13)}$$

When the sum converges absolutely, then this function does satisfy Poisson’s equation (A.9).

A representation which is more generally valid is defined by a random sum. Define the first entrance time and first return time to a state $x^* \in X$ by, respectively,
\[\sigma_{x^*} = \min(t \geq 0 : X(t) = x^*) \quad \tau_{x^*} = \min(t \geq 1 : X(t) = x^*) \] (A.14)

Proposition \textit{A.3.1} (i) is contained in [367, Theorem 10.0.1], and (ii) is explained in Section 17.4 of [367].

\textbf{Proposition A.3.1.} Let \(x^* \in X \) be a given state satisfying \(E_{x^*}[\tau_{x^*}] < \infty \). Then,

(i) The probability distribution defined below is invariant:
\[
\pi(x) := \left(E_{x^*}[\tau_{x^*}] \right)^{-1} E_{x^*} \left[\sum_{t=0}^{\tau_{x^*}-1} 1(X(t) = x) \right], \quad x \in X. \tag{A.15}
\]

(ii) With \(\pi \) defined in (i), suppose that \(c : X \to \mathbb{R} \) is a function satisfying \(\pi(|c|) < \infty \). Then, the function defined below is finite-valued on \(X_\pi := \text{the support of } \pi \),
\[
h(x) = E_{x} \left[\sum_{t=0}^{\tau_{x^*}-1} c(X(t)) \right] = E_{x} \left[\sum_{t=0}^{\sigma_{x^*}} c(X(t)) \right] - c(x^*), \quad x \in X. \tag{A.16}
\]

Moreover, \(h \) solves Poisson's equation on \(X_\pi \).

The formulae for \(\pi \) and \(h \) given in Proposition \textit{A.3.1} are perhaps the most commonly known representations. In this section we develop operator-theoretic representations that are truly based on matrix inversion. These representations help to simplify the stability theory that follows, and they also extend most naturally to general state-space Markov chains, and processes in continuous time.

Operator-theoretic representations are formulated in terms of the resolvent \textit{resolvent matrix} defined in (A.2). In the special case \(\gamma = 1 \) we omit the subscript and write,
\[
R(x, y) = \sum_{t=0}^{\infty} 2^{-t-1} P^t(x, y), \quad x, y \in X. \tag{A.17}
\]

In this special case, the resolvent satisfies \(R(x, X) := \sum_y R(x, y) = 1 \), and hence it can be interpreted as a transition matrix. In fact, it is precisely the transition matrix for a sampled process. Suppose that \(\{t_k\} \) is an i.i.d. process with geometric distribution satisfying \(P\{t_k = n\} = 2^{-n-1} \) for \(n \geq 0, \ k \geq 1 \). Let \(\{T_k : k \geq 0\} \) denote the sequence of partial sums,
\[
T_0 = 0, \text{ and } T_{k+1} = T_k + t_{k+1} \text{ for } k \geq 0.
\]

Then, the sampled process,
\[
Y(k) = X(T_k), \quad k \geq 0, \tag{A.18}
\]

is a Markov chain with transition matrix \(R \).

Solutions to the invariance equations for \(Y \) and \(X \) are closely related:
Proposition A.3.2. For any Markov chain X on X with transition matrix P,

(i) The resolvent equation holds,

\[DR = RD = DR, \quad \text{where } DR = R - I. \quad (A.19) \]

(ii) A probability distribution π on X is P-invariant if and only if it is R-invariant.

(iii) Suppose that an invariant measure π exists, and that $g: X \to \mathbb{R}$ is given with $\pi(|g|) < \infty$. Then, a function $h: X \to \mathbb{R}$ solves Poisson’s equation $Dh = -\tilde{g}$ with $\tilde{g} := g - \pi(g)$, if and only if

\[DRh = -R\tilde{g}. \quad (A.20) \]

Proof. From the definition of R we have,

\[PR = \sum_{t=0}^{\infty} 2^{-(t+1)} P^{t+1} = \sum_{t=1}^{\infty} 2^{-t} P^t = 2R - I. \]

Hence $DR = PR - R = R - I$, proving (i).

To see (ii) we pre-multiply the resolvent equation (A.19) by π,

\[\pi DR = \pi DR \]

Obviously then, $\pi D = 0$ if and only if $\pi DR = 0$, proving (ii). The proof of (iii) is similar. \qed

The operator-theoretic representations of π and h are obtained under the following minorization condition: Suppose that $s: X \to \mathbb{R}_+$ is a given function, and ν is a probability on X such that

\[R(x, y) \geq s(x)\nu(y) \quad x, y \in X. \quad (A.21) \]

For example, if ν denotes the probability on X which is concentrated at a singleton $x^* \in X$, and s denotes the function on X given by $s(x) := R(x, x^*)$, $x \in X$, then we do have the desired lower bound,

\[R(x, y) \geq R(x, y)1_{x^*}(y) = s(x)\nu(y) \quad x, y \in X. \]

The inequality (A.21) is a matrix inequality that can be written compactly as

\[R \geq s \otimes \nu \quad (A.22) \]

where R is viewed as a matrix, and the right hand side is the outer product of the column vector s, and the row vector ν. From the resolvent equation and (A.22) we can now give a roadmap for solving the invariance equation (A.5). Suppose that we already have an invariant measure π, so that

\[\pi R = \pi. \]
Then, on subtracting $s \otimes \nu$ we obtain,

$$\pi(R - s \otimes \nu) = \pi R - \pi[s \otimes \nu] = \pi - \delta \nu,$$

where $\delta = \pi(s)$. Rearranging gives,

$$\pi[I - (R - s \otimes \nu)] = \delta \nu. \quad (A.23)$$

We can now attempt an inversion. The point is, the operator $D_R := I - R$ is not invertible, but by subtracting the outer product $s \otimes \nu$ there is some hope in constructing an inverse. Define the potential matrix as

$$G = \sum_{n=0}^{\infty} (R - s \otimes \nu)^n. \quad (A.24)$$

Under certain conditions we do have $G = [I - (R - s \otimes \nu)]^{-1}$, and hence from (A.23) we obtain the representation of π,

$$\pi = \delta [\nu G]. \quad (A.25)$$

We can also attempt the ‘forward direction’ to construct π: Given a pair s, ν satisfying the lower bound (A.22), we define $\mu := \nu G$. We must then answer two questions: (i) when is μ invariant? (ii) when is $\mu(X) < \infty$? If both are affirmative, then we do have an invariant measure, given by

$$\pi(x) = \frac{\mu(x)}{\mu(X)}, \quad x \in X.$$

We will show that μ always exists as a finite-valued measure on X, and that it is always subinvariant,

$$\mu(y) \geq \sum_{x \in X} \mu(x) R(x, y), \quad y \in X.$$

Invariance and finiteness both require some form of stability for the process.

The following result shows that the formula (A.25) coincides with the representation given in (A.15) for the sampled chain Y.

Proposition A.3.3. Suppose that $\nu = \delta_{x^*}$, the point mass at some state $x^* \in X$, and suppose that $s(x) := R(x, x^*)$ for $x \in X$. Then we have for each bounded function $g: X \to \mathbb{R}$,

$$(R - s \otimes \nu)^n g(x) = E_x[g(Y(n))1\{\tau_{x^*}^Y > n\}], \quad x \in X, \ n \geq 1, \quad (A.26)$$

where $\tau_{x^*}^Y$ denotes the first return time to x^* for the chain Y defined in (A.18). Consequently,

$$Gg(x) := \sum_{n=0}^{\infty} (R - s \otimes \nu)^n g(x) = E_x\left[\sum_{t=0}^{\tau_{x^*}^Y-1} g(Y(t))\right].$$
Proof. We have \((R - s \otimes \nu)(x, y) = R(x, y) - R(x, x^*)\mathbf{1}_{y=x^*} = R(x, y)\mathbf{1}_{y\neq x^*}\). Or, in probabilistic notation,
\[(R - s \otimes \nu)(x, y) = P_x\{Y(1) = y, \tau^Y_{x^*} > 1\}, \quad x, y \in X.\]
This establishes the formula (A.26) for \(n = 1\). The result then extends to arbitrary \(n \geq 1\) by induction. If (A.26) is true for any given \(n\), then
\[
(R - s \otimes \nu)^{n+1}(x, g) = \sum_{y \in X} [(R - s \otimes \nu)(x, y)] [(R - s \otimes \nu)^n(y, g)]
\]
where the second equation follows from the induction hypothesis, and in the third equation the Markov property was applied in the form (1.19) for \(Y\). The final equation follows from the smoothing property of the conditional expectation.

A.3.2 Communication
The following result shows that one can assume without loss of generality that the chain is irreducible by restricting to an absorbing subset of \(X\). The set \(X_{x^*} \subset X\) defined in Proposition A.3.4 is known as a communicating class.

Proposition A.3.4. For each \(x^* \in X\) the set defined by
\[
X_{x^*} = \{y : R(x^*, y) > 0\}
\]
is absorbing: \(P(x, X_{x^*}) = 1\) for each \(x \in X_{x^*}\). Consequently, if \(X\) is \(x^*\)-irreducible then the process may be restricted to \(X_{x^*}\), and the restricted process is irreducible.

Proof. We have \(DR = R - I\), which implies that \(R = \frac{1}{2}(RP + I)\). Consequently, for any \(x_0, x_1 \in X\) we obtain the lower bound,
\[
R(x^*, x_1) \geq \frac{1}{2} \sum_{y \in X} R(x^*, y)P(y, x_1) \geq \frac{1}{2} R(x^*, x_0)P(x_0, x_1).
\]
Consequently, if \(x_0 \in X_{x^*}\) and \(P(x_0, x_1) > 0\) then \(x_1 \in X_{x^*}\). This shows that \(X_{x^*}\) is always absorbing.

The resolvent equation in Proposition A.3.2 (i) can be generalized to any one of the resolvent matrices \(\{R_{\gamma}\}\):

Proposition A.3.5. Consider the family of resolvent matrices (A.2). We have the two resolvent equations,
(i) \([\gamma I - D]R_\gamma = R_\gamma [\gamma I - D] = I, \gamma > 0.\)

(ii) For distinct \(\gamma_1, \gamma_2 \in (1, \infty),\)
\[
R_{\gamma_2} = R_{\gamma_1} + (\gamma_1 - \gamma_2)R_{\gamma_1}R_{\gamma_2} = R_{\gamma_1} + (\gamma_1 - \gamma_2)R_{\gamma_2}R_{\gamma_1} \tag{A.28}
\]

Proof. For any \(\gamma > 0\) we can express the resolvent as a matrix inverse,
\[
R_\gamma = \sum_{t=0}^{\infty} (1 + \gamma)^{-t-1} P^t = [\gamma I - D]^{-1}, \quad x \in X, \tag{A.29}
\]
and from (A.29) we deduce (i). To see (ii) write,
\[
[\gamma_1 I - D] - [\gamma_2 I - D] = (\gamma_1 - \gamma_2)I
\]
Multiplying on the left by \([\gamma_1 I - D]^{-1}\) and on the right by \([\gamma_2 I - D]^{-1}\) gives,
\[
[\gamma_2 I - D]^{-1} - [\gamma_1 I - D]^{-1} = (\gamma_1 - \gamma_2)[\gamma_1 I - D]^{-1}[\gamma_2 I - D]^{-1}
\]
which is the first equality in (A.28). The proof of the second equality is identical. \(\square\)

When the chain is \(x^*\)-irreducible then one can solve the minorization condition with \(s\) positive everywhere:

Lemma A.3.6. Suppose that \(X\) is \(x^*\)-irreducible. Then there exists \(s: X \rightarrow [0, 1]\) and a probability distribution \(\nu\) on \(X\) satisfying,
\[
s(x) > 0 \text{ for all } x \in X \text{ and } \nu(y) > 0 \text{ for all } y \in X_{x^*}.
\]

Proof. Choose \(\gamma_1 = 1, \gamma_2 \in (0, 1)\), and define \(s_0(x) = 1_{x^*}(x), \quad \nu_0(y) = R_{\gamma_2}(x^*, y),\)
\(x, y \in X,\) so that \(R_{\gamma_2} \geq s_0 \otimes \nu_0.\) From (A.28),
\[
R_{\gamma_2} = R_1 + (1 - \gamma_2)R_1R_{\gamma_2} \geq (1 - \gamma_2)R_1[s_0 \otimes \nu_0].
\]
Setting \(s = (1 - \gamma_2)R_1s_0\) and \(\nu = \nu_0\) gives \(R = R_1 \geq s \otimes \nu.\) The function \(s\) is positive everywhere due to the \(x^*\)-irreducibility assumption, and \(\nu\) is positive on \(X_{x^*}\) since \(R_{\gamma_2}(x^*, y) > 0\) if and only if \(R(x^*, y) > 0.\) \(\square\)

The following is the key step in establishing subinvariance, and criteria for invariance. Note that Lemma A.3.7 (i) only requires the minorization condition (A.22).

Lemma A.3.7. Suppose that the function \(s: X \rightarrow [0, 1]\) and the probability distribution \(\nu\) on \(X\) satisfy (A.22). Then,

(i) \(Gs(x) \leq 1\) for every \(x \in X.\)

(ii) \((R - s \otimes \nu)G = G(R - s \otimes \nu) = G - I.\)

(iii) If \(X\) is \(x^*\)-irreducible and \(s(x^*) > 0,\) then \(\sup_{x \in X} G(x, y) < \infty\) for each \(y \in X.\)
Proof. For $N \geq 0$, define $g_N : X \to \mathbb{R}_+$ by

$$g_N = \sum_{n=0}^{N} (R - s \otimes \nu)^n s.$$

We show by induction that $g_N(x) \leq 1$ for every $x \in X$ and $N \geq 0$. This will establish (i) since $g_N \uparrow Gs$, as $N \uparrow \infty$.

For each x we have $g_0(x) = s(x) = s(x)\nu(X) \leq R(x,X) = 1$, which verifies the induction hypothesis when $N = 0$. If the induction hypothesis is true for a given $N \geq 0$, then

$$g_{N+1}(x) = (R - s \otimes \nu)g_N(x) + s(x) \leq (R - s \otimes \nu)1(x) + s(x) = [R(x,X) - s(x)\nu(X)] + s(x) = 1,$$

where in the last equation we have used the assumption that $\nu(X) = 1$.

Part (ii) then follows from the definition of G.

To prove (iii) we first apply (ii), giving $GR = G - I + Gs \otimes \nu$. Consequently, from (i),

$$GRs = Gs - s + \nu(s)Gs \leq 2 \quad \text{on } X.$$ \hspace{1cm} (A.30)

Under the conditions of the lemma we have $Rs(y) > 0$ for every $y \in X$, and this completes the proof of (iii), with the explicit bound,

$$G(x,y) \leq 2(Rs(y))^{-1} \text{ for all } x,y \in X.$$

□

It is now easy to establish subinvariance:

Proposition A.3.8. For a x^*-irreducible Markov chain, and any small pair (s, ν), the measure $\mu = \nu G$ is always subinvariant. Writing $p_{(s,\nu)} = \nu G s$, we have

(i) $p_{(s,\nu)} \leq 1$;

(ii) μ is invariant if and only if $p_{(s,\nu)} = 1$.

(iii) μ is finite if and only if $\nu G(X) < \infty$.

Proof. Result (i) follows from Lemma A.3.7 and the assumption that ν is a probability distribution on X. The final result (iii) is just a restatement of the definition of μ. For (ii), write

$$\mu R = \sum_{n=0}^{\infty} \nu(R - s \otimes \nu)^n R$$

$$= \sum_{n=0}^{\infty} \nu(R - s \otimes \nu)^{n+1} + \sum_{n=0}^{\infty} \nu(R - s \otimes \nu)^n s \otimes \nu$$

$$= \mu - \nu + p_{(s,\nu)} \nu \leq \mu.$$

□
It turns out that the case \(p(s,\nu) = 1 \) is equivalent to a form of recurrence.

Definition A.3.1. Recurrence

A \(x^*-irreducible \) Markov chain \(X \) is called,

(i) **Harris recurrent**, if the return time (A.14) is finite almost-surely from each initial condition,
\[
P_x\{\tau_{x^*} < \infty\} = 1, \quad x \in X.
\]

(ii) **Positive Harris recurrent**, if it is Harris recurrent, and an invariant measure \(\pi \) exists.

For a proof of the following result the reader is referred to [388]. A key step in the proof is the application of Proposition A.3.3.

Proposition A.3.9. Under the conditions of Proposition A.3.8,

(i) \(p(s,\nu) = 1 \) if and only if \(P_x\{\tau_{x^*} < \infty\} = 1 \). If either of these conditions hold then \(Gs(x) = P_x\{\tau_{x^*} < \infty\} = 1 \) for each \(x \in X_{x^*} \).

(ii) \(\mu(X) < \infty \) if and only if \(E_{x^*}[\tau_{x^*}] < \infty \).

To solve Poisson’s equation (A.9) we again apply Proposition A.3.2. First note that the solution \(h \) is not unique since we can always add a constant to obtain a new solution to (A.9). This gives us some flexibility: assume that \(\nu(h) = 0 \), so that \((R - s \otimes \nu)h = Rh \). This combined with the formula \(Rh = h - Rf + \eta \) given in (A.20) leads to a familiar looking identity,
\[
[I - (R - s \otimes \nu)]h = R\bar{c}.
\]

Provided the inversion can be justified, this leads to the representation
\[
h = [I - (R - s \otimes \nu)]^{-1}R\bar{c} = GR\bar{c}.
\] \hspace{1cm} (A.31)

Based on this we define the **fundamental matrix**,
\[
Z := GR(I - 1 \otimes \pi),
\] \hspace{1cm} (A.32)

so that the function in (A.31) can be expressed \(h = Zc \).

Proposition A.3.10. Suppose that \(\mu(X) < \infty \). If \(c: X \to \mathbb{R} \) is any function satisfying \(\mu(|c|) < \infty \) then the function \(h = Zc \) is finite valued on the support of \(\nu \) and solves Poisson’s equation.
Proof. We have $\mu(|\tilde{c}|) = \nu(GR|\tilde{c}|)$, which shows that $\nu(GR|\tilde{c}|) < \infty$. It follows that h is finite valued a.e. $[\nu]$. Note also from the representation of μ,

$$\nu(h) = \nu(GR\tilde{c}) = \mu(R\tilde{c}) = \mu(\tilde{c}) = 0.$$

To see that h solves Poisson’s equation we write,

$$Rh = (R - s \otimes \nu)h = (R - s \otimes \nu)GR\tilde{c} = GR\tilde{c} - R\tilde{c},$$

where the last equation follows from Lemma A.3.7 (ii). We conclude that h solves the version of Poisson’s equation (A.20) for the resolvent with forcing function Rc, and Proposition A.3.2 then implies that h is a solution for P with forcing function c. □

A.3.3 Near-monotone functions

A function $c: X \to \mathbb{R}$ is called near-monotone if the sublevel set, $S_c(r) := \{x : c(x) \leq r\}$, is finite for each $r < \sup_{x \in X} c(x)$. In applications the function c is typically a cost function, and hence the near monotone assumption is the natural condition that large states have relatively high cost.

The function $c = 1_{\{x^*\}}$ is near monotone since $S_c(r)$ consists of the singleton $\{x^*\}$ for $r \in [0, 1)$, and it is empty for $r < 0$. A solution to Poisson’s equation with this forcing function can be constructed based on the sample path formula (A.16),

$$h(x) = \mathbb{E}_x \left[\sum_{t=0}^{\tau_{x^*} - 1} 1_{\{x^*\}} c(X(t)) - \pi(\{x^*\}^c) \right]$$

(A.33)

$$= (1 - \pi(\{x^*\}) \mathbb{E}_x[\tau_{x^*}] - 1_{x^*}(x) = \pi(x^*) \mathbb{E}_x[\sigma_{x^*}]$$

The last equality follows from the formula $\pi(x^*) \mathbb{E}_{x^*}[\tau_{x^*}] = 1$ (see (A.15)) and the definition $\sigma_{x^*} = 0$ when $X(0) = x^*$.

The fact that h is bounded from below is a special case of the following general result.

Proposition A.3.11. Suppose that c is near monotone with $\eta = \pi(c) < \infty$. Then,

(i) The relative value function h given in (A.31) is uniformly bounded from below, finite-valued on X_{x^*}, and solves Poisson’s equation on the possibly larger set $X_h = \{x \in X : h(x) < \infty\}$.

(ii) Suppose there exists a non-negative valued function satisfying $g(x) < \infty$ for some $x \in X_{x^*}$, and the Poisson inequality,

$$Dg(x) \leq -c(x) + \eta, \quad x \in X.$$ (A.34)

Then $g(x) = h(x) + \nu(g)$ for $x \in X_{x^*}$, where h is given in (A.31). Consequently, g solves Poisson’s equation on X_{x^*}.
Proof. Note that if $\eta = \sup_{x \in X} c(x)$ then $c(x) \equiv \eta$ on X^*, so we may take $h \equiv 1$ to solve Poisson’s equation.

We henceforth assume that $\eta < \sup_{x \in X} c(x)$, and define $S = \{ x \in X : c(x) \leq \eta \}$. This set is finite since c is near-monotone. We have the obvious bound $\tilde{c}(x) \geq -\eta 1_S(x)$ for $x \in X$, and hence

$$h(x) \geq -\eta GR 1_S(x), \quad x \in X.$$

Lemma A.3.7 and (A.30) imply that GRI^*_S is a bounded function on X. This completes the proof that h is bounded from below, and Proposition A.3.10 establishes Poisson’s equation.

To prove (ii) we maintain the notation used in Proposition A.3.10. On applying Lemma A.3.6 we can assume without loss of generality that the pair (s, ν) used in the definition of G are non-zero on X^*. Note first of all that by the resolvent equation,

$$Rg - g = R\tilde{c} \leq -R\tilde{c}.$$

We thus have the bound,

$$(R - s \otimes \nu)g \leq g - R\tilde{c} - \nu(g)s,$$

and hence for each $n \geq 1$,

$$0 \leq (R - s \otimes \nu)^ng \leq g - \sum_{i=0}^{n-1} (R - s \otimes \nu)^i R\tilde{c} - \nu(g) \sum_{i=0}^{n-1} (R - s \otimes \nu)^i s.$$

On letting $n \uparrow \infty$ this gives,

$$g \geq GR\tilde{c} + \nu(g)Gs = h + \nu(g)h_0,$$

where $h_0 := Gs$. The function h_0 is identically one on X^* by Proposition A.3.9, which implies that $g - \nu(g) \geq h$ on X^*. Moreover, using the fact that $\nu(h) = 0$,

$$\nu(g - \nu(g) - h) = \nu(g - \nu(g)) - \nu(h) = 0.$$

Hence $g - \nu(g) - h = 0$ a.e. $[\nu]$, and this implies that $g - \nu(g) - h = 0$ on X^* as claimed. \hfill \square

Bounds on the potential matrix G are obtained in the following section to obtain criteria for the existence of an invariant measure as well as explicit bounds on the relative value function.

A.4 Criteria for stability

To compute the invariant measure π it is necessary to compute the mean random sum (A.15), or invert a matrix, such as through an infinite sum as in (A.24). To verify the existence of an invariant measure is typically far easier.

In this section we describe Foster’s criterion to test for the existence of an invariant measure, and several variations on this approach which are collectively called the Foster-Lyapunov criteria for stability. Each of these stability conditions can be interpreted as a relaxation of the Poisson inequality (A.34).
A.4.1 Foster’s criterion

Foster’s criterion is the simplest of the “Foster-Lyapunov” drift conditions for stability. It requires that for a non-negative valued function V on X, a finite set $S \subset X$, and $b < \infty$,

$$DV(x) \leq -1 + b1_S(x), \quad x \in X.$$ \hspace{0.2cm} (V2)

This is precisely Condition (V3) (introduced at the start of this chapter) using $f \equiv 1$.

The construction of the Lyapunov function V is illustrated using the M/M/1 queue in Section 3.3.

The existence of a solution to (V2) is equivalent to positive recurrence. This is summarized in the following.

Theorem A.4.1. (Foster’s Criterion) The following are equivalent for a x^*-irreducible Markov chain

(i) An invariant measure π exists.

(ii) There is a finite set $S \subset X$ such that $E_x[\tau_S] < \infty$ for $x \in S$.

(iii) There exists $V : X \to (0, \infty]$, finite at some $x_0 \in X$, a finite set $S \subset X$, and $b < \infty$ such that Foster’s Criterion (V2) holds.

If (iii) holds then there exists $b_{x^*} < \infty$ such that

$$E_x[\tau_{x^*}] \leq V(x) + b_{x^*}, \quad x \in X.$$

Proof. We just prove the implication (iii) \implies (i). The remaining implications may be found in [367, Chapter 11].
Take any pair \((s, \nu)\) positive on \(X_{x^*}\) and satisfying \(R \geq s \otimes \nu\). On applying Proposition A.3.8 it is enough to show that \(\mu(X) < \infty\) with \(\mu = \nu G\).

Letting \(f \equiv 1\) we have under (V2) \(DV \leq -f + b1\), and on applying \(R\) to both sides of this inequality we obtain using the resolvent equation \((A.19)\), \((R - I)V = RDV \leq -Rf + bR1_{x}\), or on rearranging terms,

\[
RV \leq V - Rf + bR1_{x}. \tag{A.35}
\]

From \((A.35)\) we have \((R - s \otimes \nu)V \leq V - Rf + g\), where \(g := bR1_{x}\). On iterating this inequality we obtain,

\[
(R - s \otimes \nu)^2V \leq (R - s \otimes \nu)(V - Rf + g)
\]

\[
\leq V - Rf + g
\]

\[
-(R - s \otimes \nu)Rf
\]

\[
+(R - s \otimes \nu)g.
\]

By induction we obtain for each \(n \geq 1\),

\[
0 \leq (R - s \otimes \nu)^nV \leq V - \sum_{i=0}^{n-1} (R - s \otimes \nu)^iRf + \sum_{i=0}^{n-1} (R - s \otimes \nu)^ig.
\]

Rearranging terms then gives,

\[
\sum_{i=0}^{n-1} (R - s \otimes \nu)^iRf \leq V + \sum_{i=0}^{n-1} (R - s \otimes \nu)^ig,
\]

and thus from the definition \((A.24)\) we obtain the bound,

\[
Gf \leq V + Gg. \tag{A.36}
\]

To obtain a bound on the final term in \((A.36)\) recall that \(g := bR1_{x}\). From its definition we have,

\[
GR = G[R - s \otimes \nu] + G[s \otimes \nu] = G - I + (Gs) \otimes \nu,
\]

which shows that

\[
Gg = bGR1_{x} \leq b[G1_{x} + \nu(S)Gs].
\]

This is uniformly bounded over \(X\) by Lemma A.3.7. Since \(f \equiv 1\) the bound \((A.36)\) implies that \(Gf(x) = G(x, X) \leq V(x) + b1\), \(x \in X\), with \(b1\) an upper bound on \(Gg\).

Integrating both sides of the bound \((A.36)\) with respect to \(\nu\) gives,

\[
\mu(X) = \sum_{x \in X} \nu(x)G(x, X) \leq \nu(V) + \nu(g).
\]

The minorization and the drift inequality \((A.35)\) give

\[
s\nu(V) = (s \otimes \nu)(V) \leq RV \leq V - 1 + g,
\]
which establishes finiteness of $\nu(V)$, and the bound,

$$\nu(V) \leq \inf_{x \in X} \frac{V(x) - 1 + g(x)}{s(x)}.$$

\[\square\]

The following result illustrates the geometric considerations that may be required in the construction of a Lyapunov function, based on the relationship between the gradient $\nabla V(x)$, and the drift vector field $\Delta : X \to \mathbb{R}^\ell$ defined by

$$\Delta(x) := E[X(t+1) - X(t) \mid X(t) = x], \quad x \in X. \quad (A.37)$$

This geometry is illustrated in Figure A.1 based on the following proposition.

Proposition A.4.2. Consider a Markov chain on $X \subset \mathbb{Z}_+^\ell$, and a C^1 function $V : \mathbb{R}^\ell \to \mathbb{R}_+$ satisfying the following conditions:

(a) The chain is skip-free in the mean, in the sense that

$$b_X := \sup_{x \in X} E[\|X(t+1) - X(t)\| \mid X(t) = x] < \infty;$$

(b) There exists $\varepsilon_0 > 0$, $b_0 < \infty$, such that,

$$\langle \Delta(y), \nabla V(x) \rangle \leq -(1 + \varepsilon_0) + b_0(1 + \|x\|)^{-1}\|x - y\|, \quad x, y \in X. \quad (A.38)$$

Then the function V solves Foster’s criterion (V2).

Proof. This is an application of the Mean Value Theorem which asserts that there exists a state $\bar{X} \in \mathbb{R}^\ell$ on the line segment connecting $X(t)$ and $X(t+1)$ with,

$$V(X(t+1)) = V(X(t)) + \langle \nabla V(\bar{X}), (X(t+1) - X(t)) \rangle,$$

from which the following bound follows:

$$V(X(t+1)) \leq V(X(t)) - (1 + \varepsilon_0) + b_0(1 + \|X(t)\|)^{-1}\|X(t+1) - X(t)\|$$

Under the skip-free assumption this shows that

$$DV(x) = E[V(X(t+1) - V(X(t)) \mid X(t) = x] \leq -(1 + \varepsilon_0) + b_0(1 + \|x\|)^{-1}b_X, \quad \|x\| \geq n_0.$$

Hence Foster’s Criterion is satisfied with the finite set, $S = \{x \in X : (1 + \|x\|)^{-1}b_X \geq \varepsilon_0\}$. \[\square\]
A.4.2 Criteria for finite moments

We now turn to the issue of performance bounds based on the discounted-cost defined in (A.2) or the average cost \(\eta = \pi(c) \) for a cost function \(c: X \to \mathbb{R}_+ \). We also introduce martingale methods to obtain performance bounds. We let \(\{F_t : t \geq 0\} \) denote the filtration, or history generated by the chain,

\[F_t := \sigma\{X(0), \ldots, X(t)\}, \quad t \geq 0. \]

Recall that a random variable \(\tau \) taking values in \(\mathbb{Z}_+ \) is called a stopping time if for each \(t \geq 0 \),

\[\{\tau = t\} \in F_t. \]

That is, by observing the process \(X \) on the time interval \([0, t]\) it is possible to determine whether or not \(\tau = t \).

The Comparison Theorem is the most common approach to obtaining bounds on expectations involving stopping times.

Theorem A.4.3. (Comparison Theorem) Suppose that the non-negative functions \(V, f, g \) satisfy the bound,

\[DV \leq -f + g, \quad x \in X. \tag{A.39} \]

Then for each \(x \in X \) and any stopping time \(\tau \) we have

\[E_x\left[\sum_{t=0}^{\tau-1} f(X(t)) \right] \leq V(x) + E_x\left[\sum_{t=0}^{\tau-1} g(X(t)) \right]. \]

Proof. Define \(M(0) = V(X(0)) \), and for \(n \geq 1 \),

\[M(n) = V(X(n)) + \sum_{t=0}^{n-1} (f(X(t)) - g(X(t))). \]

The assumed inequality can be expressed,

\[E[V(X(t+1)) \mid F_t] \leq V(X(t)) - f(X(t)) + g(X(t)), \quad t \geq 0, \]

which shows that the stochastic process \(M \) is a super-martingale,

\[E[M(n+1) \mid F_n] \leq M(n), \quad n \geq 0. \]

Define for \(N \geq 1 \),

\[\tau^N = \min\{t \leq \tau : t + V(X(t)) + f(X(t)) + g(X(t)) \geq N\}. \]

This is also a stopping time. The process \(M \) is uniformly bounded below by \(-N^2\) on the time-interval \((0, \ldots, \tau^N - 1)\), and it then follows from the super-martingale property that
\[E[M(\tau^N)] \leq E[M(0)] = V(x), \quad N \geq 1. \]

From the definition of \(M \) we thus obtain the desired conclusion with \(\tau \) replaced by \(\tau^N \): For each initial condition \(X(0) = x \),

\[E_x \left[\sum_{t=0}^{\tau^N-1} f(X(t)) \right] \leq V(x) + E_x \left[\sum_{t=0}^{\tau^N-1} g(X(t)) \right]. \]

The result then follows from the Monotone Convergence Theorem since we have \(\tau^N \uparrow \tau \) as \(N \to \infty \). \(\square \)

In view of the Comparison Theorem, to bound \(\pi(c) \) we search for a solution to (V3) or (A.39) with \(|c| \leq f \). The existence of a solution to either of these drift inequalities is closely related to the following stability condition,

Definition A.4.1. Regularity

Suppose that \(X \) is a \(x^* \)-irreducible Markov chain, and that \(c: X \to \mathbb{R}_+ \) is a given function. The chain is called \(c \)-regular if the following cost over a \(y \)-cycle is finite for each initial condition \(x \in X \), and each \(y \in X_{x^*} \):

\[E_x \left[\sum_{t=0}^{\tau_y-1} c(X(t)) \right] < \infty. \]

Proposition A.4.4. Suppose that the function \(c: X \to \mathbb{R} \) satisfies \(c(x) \geq 1 \) outside of some finite set. Then,

(i) If \(X \) is \(c \)-regular then it is positive Harris recurrent and \(\pi(c) < \infty \).

(ii) Conversely, if \(\pi(c) < \infty \) then the chain restricted to the support of \(\pi \) is \(c \)-regular.

Proof. The result follows from [367, Theorem 14.0.1]. To prove (i) observe that \(X \) is Harris recurrent since \(P_x \{ \tau_{x^*} < \infty \} = 1 \) for all \(x \in X \) when the chain is \(c \)-regular. We have positivity and \(\pi(c) < \infty \) based on the representation (A.15). \(\square \)

Criteria for \(c \)-regularity will be established through operator manipulations similar to those used in the proof of Theorem A.4.1 based on the following refinement of Foster’s Criterion: For a non-negative valued function \(V \) on \(X \), a finite set \(S \subset X \), \(b < \infty \), and a function \(f: X \to [1, \infty) \),

\[\mathcal{D}V(x) \leq -f(x) + b \mathbf{1}_S(x), \quad x \in X. \quad (V3) \]

The function \(f \) is interpreted as a bounding function. In Theorem A.4.5 we consider \(\pi(c) \) for functions \(c \) bounded by \(f \) in the sense that,

\[||c||_f := \sup_{x \in X} \frac{|c(x)|}{f(x)} < \infty. \quad (A.40) \]
Theorem A.4.5. Suppose that \(X \) is \(x^* \)-irreducible, and that there exists \(V : X \rightarrow (0, \infty) \), \(f : X \rightarrow [1, \infty) \), a finite set \(S \subset X \), and \(b < \infty \) such that (V3) holds. Then for any function \(c : X \rightarrow \mathbb{R}_+ \) satisfying \(\|c\|_f \leq 1 \),

\[\text{(i)} \quad \text{The average cost satisfies the uniform bound,} \quad \eta_x = \pi(c) \leq b < \infty, \quad x \in X. \]

\[\text{(ii)} \quad \text{The discounted-cost value function satisfies the following uniform bound, for any given discount parameter \(\gamma > 0 \),} \quad h_\gamma(x) \leq V(x) + b\gamma^{-1}, \quad x \in X. \]

\[\text{(iii)} \quad \text{There exists a solution to Poisson’s equation satisfying, for some} \quad b_1 < \infty, \quad h(x) \leq V(x) + b_1, \quad x \in X. \]

Proof. Observe that (ii) and the definition (A.6) imply (i).

To prove (ii) we apply the resolvent equation,

\[PR\gamma = R\gamma P = (1 + \gamma)R\gamma I. \quad (A.41) \]

Equation (A.41) is a restatement of Equation (A.29). Consequently, under (V3),

\[(1 + \gamma)R\gamma V - V = R\gamma PV \leq R\gamma[V - f + b_1 \mathbf{1}_S]. \]

Rearranging terms gives \(R\gamma f + \gamma R\gamma V \leq V + bR\gamma \mathbf{1}_S \). This establishes (ii) since \(R\gamma \mathbf{1}_S (x) \leq R\gamma(x, X) \leq \gamma^{-1} \) for \(x \in X \).

We now prove (iii). Recall that the measure \(\mu = \nu G \) is finite and invariant since we may apply Theorem A.4.1 when the chain is \(x^* \)-irreducible. We shall prove that the function \(h = GR\tilde{c} \) given in (A.31) satisfies the desired upper bound.

The proof of the implication (iii) \(\implies \) (i) in Theorem A.4.1 was based upon the bound (A.36),

\[GRf \leq V + Gg, \]

where \(g := bR\mathbf{1}_S \). Although it was assumed there that \(f \equiv 1 \), the same steps lead to this bound for general \(f \geq 1 \) under (V3). Consequently, since \(0 \leq c \leq f \),

\[GR\tilde{c} \leq GRf \leq V + Gg. \]

Part (iii) follows from this bound and Lemma A.3.7 with \(b_1 := \sup Gg (x) < \infty \). \(\square \)

Proposition A.4.2 can be extended to provide the following criterion for finite moments in a skip-free Markov chain:

Proposition A.4.6. Consider a Markov chain on \(X \subset \mathbb{R}_\ell \), and a \(C^1 \) function \(V : \mathbb{R}_\ell \rightarrow \mathbb{R}_+ \) satisfying the following conditions:
(i) The chain is skip-free in mean-square:
\[b_{X_2} := \sup_{x \in X} \mathbb{E}[\|X(t+1) - X(t)\|^2 \mid X(t) = x] < \infty; \]

(ii) There exists \(b_0 < \infty \) such that,
\[\langle \Delta(y), \nabla V(x) \rangle \leq -\|x\| + b_0 \|x - y\|^2, \quad x, y \in X. \quad (A.42) \]

Then the function \(V \) solves (V3) with \(f(x) = 1 + \frac{1}{2} \|x\|. \)

\[\square \]

A.4.3 State-dependent drift

In this section we consider consequences of state-dependent drift conditions of the form
\[\sum_{y \in X} P^{n(x)}(x,y)V(y) \leq g[V(x), n(x)], \quad x \in S^c, \quad (A.43) \]

where \(n(x) \) is a function from \(X \) to \(\mathbb{Z}_+ \), \(g \) is a function depending on which type of stability we seek to establish, and \(S \) is a finite set.

The function \(n(x) \) here provides the state-dependence of the drift conditions, since from any \(x \) we must wait \(n(x) \) steps for the drift to be negative.

In order to develop results in this framework we work with a sampled chain \(\widehat{X} \).

Using \(n(x) \) we define the new transition law \(\widehat{P}(x,A) \) by
\[\widehat{P}(x,A) = P^{n(x)}(x,A), \quad x \in X, \ A \subset X, \quad (A.44) \]

and let \(\widehat{X} \) denote a Markov chain with this transition law. This Markov chain can be constructed explicitly as follows. The time \(n(x) \) is a (trivial) stopping time. Let \(\{n_k\} \) denote its iterates: That is, along any sample path, \(n_0 = 0, n_1 = n(x) \) and
\[n_{k+1} = n_k + n(X(n_k)). \]

Then it follows from the strong Markov property that
\[\widehat{X}(k) = X(n_k), \quad k \geq 0 \quad (A.45) \]

is a Markov chain with transition law \(\widehat{P} \).

Let \(\widehat{F}_k = \mathcal{F}_{n_k} \) be the \(\sigma \)-field generated by the events “before \(n_k \”: that is,
\[\widehat{F}_k := \{ A : A \cap \{n_k \leq n\} \in \mathcal{F}_n, \ n \geq 0 \}. \]

We let \(\hat{\tau}_S \) denote the first return time to \(S \) for the chain \(\widehat{X} \). The time \(n_k \) and the event \(\{\hat{\tau}_S \geq k\} \) are \(\widehat{F}_{k-1} \)-measurable for any \(S \subset X \).

The integer \(n_{\hat{\tau}_S} \) is a particular time at which the original chain visits the set \(S \). Minimality implies the bound,
\[n_{\hat{\tau}_S} \geq \tau_S. \quad (A.46) \]
By adding the lengths of the sampling times \(n_k \) along a sample path for the sampled chain, the time \(n_{\bar{\tau}_S} \) can be expressed as the sum,

\[
n_{\bar{\tau}_S} = \sum_{k=0}^{\bar{\tau}_S-1} n(\hat{X}(k)). \tag{A.47}
\]

These relations enable us to first apply the drift condition (A.43) to bound the index at which \(\hat{X} \) reaches \(S \), and thereby bound the hitting time for the original chain.

We prove here a state-dependent criterion for positive recurrence. Generalizations are described in the Notes section in Chapter 10, and Theorem 10.0.1 contains strengthened conclusions for the CRW network model.

Theorem A.4.7. Suppose that \(X \) is a \(x^* \)-irreducible chain on \(X \), and let \(n(x) \) be a function from \(X \) to \(\mathbb{Z}_+ \). The chain is positive Harris recurrent if there exists some finite set \(S \), a function \(V : X \to \mathbb{R}_+ \), and a finite constant \(b \) satisfying

\[
\sum_{y \in X} P^{n(x)}(x,y)V(y) \leq V(x) - n(x) + b1_S(x), \quad x \in X \tag{A.48}
\]

in which case for all \(x \)

\[
E_x[\bar{\tau}_S] \leq V(x) + b. \tag{A.49}
\]

Proof. The state-dependent drift criterion for positive recurrence is a direct consequence of the \(f \)-regularity results of Theorem A.4.3, which tell us that without any irreducibility or other conditions on \(X \), if \(f \) is a non-negative function and

\[
\sum_{y \in X} P(x,y)V(y) \leq V(x) - f(x) + b1_S(x), \quad x \in X \tag{A.50}
\]

for some set \(S \) then for each \(x \in X \)

\[
E_x\left[\sum_{t=0}^{\bar{\tau}_S-1} f(X(t)) \right] \leq V(x) + b. \tag{A.51}
\]

We now apply this result to the chain \(\hat{X} \) defined in (A.45). From (A.48) we can use (A.51) for \(\hat{X} \), with \(f(x) \) taken as \(n(x) \), to deduce that

\[
E_x\left[\sum_{k=0}^{\bar{\tau}_S-1} n(\hat{X}(k)) \right] \leq V(x) + b. \tag{A.52}
\]

Thus from (A.46, A.47) we obtain the bound (A.49). Theorem A.4.1 implies that \(X \) is positive Harris.

\(\square \)

A.5 Ergodic theorems and coupling

The existence of a Lyapunov function satisfying (V3) leads to the ergodic theorems (1.23), and refinements of this drift inequality lead to stronger results. These results are based on the coupling method described next.
A.5.1 Coupling

Coupling is a way of comparing the behavior of the process of interest X with another process Y which is already understood. For example, if Y is taken as the stationary version of the process, with $Y(0) \sim \pi$, we then have the trivial mean ergodic theorem,

$$\lim_{t \to \infty} E[c(Y(t))] = E[c(Y(t_0))], \quad t_0 \geq 0.$$

This leads to a corresponding ergodic theorem for X provided the two processes couple in a suitably strong sense.

To precisely define coupling we define a bivariate process,

$$\Psi(t) = \left(\begin{array}{c} X(t) \\ Y(t) \end{array} \right), \quad t \geq 0,$$

where X and Y are two copies of the chain with transition probability P, and different initial conditions. It is assumed throughout that X is x^*-irreducible, and we define the coupling time for Ψ as the first time both chains reach x^* simultaneously,

$$T = \min(t \geq 1 : X(t) = Y(t) = x^*) = \min(t : \Psi(t) = (x^*, x^*)).$$

To give a full statistical description of Ψ we need to explain how X and Y are related. We assume a form of conditional independence for $k \leq T$:

$$P\{\Psi(t + 1) = (x_1, y_1)^T \mid \Psi(0), \ldots, \Psi(t); \Psi(t) = (x_0, y_0)^T, T > t\} = P(x_0, x_1)P(y_0, y_1).$$ (A.53)

It is assumed that the chains coalesce at time T, so that $X(t) = Y(t)$ for $t \geq T$.

The process Ψ is not itself Markov since given $\Psi(t) = (x, x)^T$ with $x \neq x^*$ it is impossible to know if $T \leq t$. However, by appending the indicator function of this event we obtain a Markov chain denoted,

$$\Psi^*(t) = (\Psi(t), 1\{T \leq t\}),$$

with state space $X^* = X \times X \times \{0, 1\}$. The subset $X \times X \times \{1\}$ is absorbing for this chain.

The following two propositions allow us to infer properties of Ψ^* based on properties of X. The proof of Proposition A.5.1 is immediate from the definitions.

Proposition A.5.1. Suppose that X satisfies (V3) with f coercive. Then (V3) holds for the bivariate chain Ψ^* in the form,

$$E[V_*(\Psi(t + 1)) \mid \Psi(t) = (x, y)^T] \leq V_*(x, y) - f_*(x, y) + b_*,$$

with $V_*(x, y) = V(x) + V(y)$, $f_*(x, y) = f(x) + f(y)$, and $b_* = 2b$. Consequently, there exists $b_0 < \infty$ such that,

$$E\left[\sum_{t=0}^{T-1} (f(X(t)) + f(Y(t)))\right] \leq 2[V(x) + V(y)] + b_0, \quad x, y \in X.$$

\square
A necessary condition for the Mean Ergodic Theorem for arbitrary initial conditions is aperiodicity. Similarly, aperiodicity is both necessary and sufficient for \(x^{**} \)-irreducibility of \(\Psi^* \) with \(x^{**} := (x^*, x^*, 1)^T \in X^* \):

Proposition A.5.2. Suppose that \(X \) is \(x^* \)-irreducible and aperiodic. Then the bivariate chain is \(x^{**} \)-irreducible and aperiodic.

Proof. Fix any \(x, y \in X \), and define

\[
\begin{align*}
 n_0 &= \min \{ n \geq 0 : P^n(x, x^*) P^n(y, x^*) > 0 \}.
\end{align*}
\]

The minimum is finite since \(X \) is \(x^* \)-irreducible and aperiodic. We have \(P\{T \leq n\} = 0 \) for \(n < n_0 \) and by the construction of \(\Psi^* \),

\[
\begin{align*}
 P\{T = n_0\} &= P\{\Psi(n_0) = (x^*, x^*)^T \mid T \geq n_0\} = P^{n_0}(x, x^*) P^{n_0}(y, x^*) > 0.
\end{align*}
\]

This establishes \(x^{**} \)-irreducibility.

For \(n \geq n_0 \) we have,

\[
\begin{align*}
 P\{\Psi^*(n) = x^{**}\} &\geq P\{T = n_0, \Psi^*(n) = x^{**}\} = P^{n_0}(x, x^*) P^{n_0}(y, x^*) P^{n-n_0}(x^*, x^*).
\end{align*}
\]

The right hand side is positive for all \(n \geq 0 \) sufficiently large since \(X \) is aperiodic. \(\square \)

A.5.2 Mean ergodic theorem

A mean ergodic theorem is obtained based upon the following coupling inequality:

Proposition A.5.3. For any given \(g : X \to \mathbb{R} \) we have,

\[
\begin{align*}
 |E[g(X(t))] - E[g(Y(t))]| &\leq E[(|g(X(t))| + |g(Y(t))|) \mathbf{1}(T > t)].
\end{align*}
\]

If \(Y(0) \sim \pi \) so that \(Y \) is stationary we thus obtain,

\[
\begin{align*}
 |E[g(X(t))] - \pi(g)| &\leq E[(|g(X(t))| + |g(Y(t))|) \mathbf{1}(T > t)].
\end{align*}
\]

Proof. The difference \(g(X(t)) - g(Y(t)) \) is zero for \(t \geq T \). \(\square \)

The \(f \)-total variation norm of a signed measure \(\mu \) on \(X \) is defined by

\[
\|\mu\|_f = \sup \{ |\mu(g)| : \|g\|_f \leq 1 \}.
\]

When \(f \equiv 1 \) then this is exactly twice the total-variation norm: For any two probability measures \(\pi, \mu \),

\[
\|\mu - \pi\|_{tv} := \sup_{A \subseteq X} |\mu(A) - \pi(A)|.
\]

Theorem A.5.4. Suppose that \(X \) is aperiodic, and that the assumptions of Theorem A.4.5 hold. Then,
A.5.4

The Dominated Convergence Theorem then implies that

\[\lim_{t \to \infty} \sum_{t=0}^{\infty} \| P^t(x, \cdot) - P^t(y, \cdot) \|_f \leq 2[V(x) + V(y)] + b_0. \]

(iii) If in addition \(\pi(V) < \infty \), then there exists \(b_1 < \infty \) such that

\[\sum_{t=0}^{\infty} \| P^t(x, \cdot) - \pi \|_f \leq 2V(x) + b_1. \]

The coupling inequality is only useful if we can obtain a bound on the expectation \(\mathbb{E}[|g(X(t))|] \)\(\mathbb{1}(T > t) \). The following result shows that this vanishes when \(X \) and \(Y \) are each stationary.

Lemma A.5.5. Suppose that \(X \) is aperiodic, and that the assumptions of Theorem A.4.5 hold. Assume moreover that \(X(0) \) and \(Y(0) \) each have distribution \(\pi \), and that \(\pi(|g|) < \infty \). Then,

\[\lim_{t \to \infty} \mathbb{E}[|g(X(t))| + |g(Y(t))|] \mathbb{1}(T > t) = 0. \]

Proof. Suppose that \(X, Y \) are defined on the two-sided time-interval with marginal distribution \(\pi \). It is assumed that these processes are independent on \(\{0, -1, -2, \ldots \} \).

By stationarity we can write,

\[\mathbb{E}_\pi[|g(X(t))|] \mathbb{1}(T > t) = \mathbb{E}_\pi[|g(X(t))| \mathbb{1}\{\Psi(i) \neq (x^*, x^*)^T, i = 0, \ldots, t\}] = \mathbb{E}_\pi[|g(X(0))| \mathbb{1}\{\Psi(i) \neq (x^*, x^*)^T, i = 0, -1, \ldots, -t\}]. \]

The expression within the expectation on the right hand side vanishes as \(t \to \infty \) with probability one by \((x^*, x^*)^T \)-irreducibility of the stationary process \(\{\Psi(-t) : t \in \mathbb{Z}_+\} \). By the Dominated Convergence Theorem then implies that

\[\lim_{t \to \infty} \mathbb{E}[|g(X(t))|] \mathbb{1}(T > t) = \mathbb{E}_\pi[|g(X(0))| \mathbb{1}\{\Psi(i) \neq (x^*, x^*)^T, i = 0, -1, \ldots, -t\}] = 0. \]

Repeating the same steps with \(X \) replaced by \(Y \) we obtain the analogous limit by symmetry. \(\Box \)

Proof of Theorem A.5.4. We first prove (ii). From the coupling inequality we have, with \(X(0) = x, X^\circ(0) = y \),

\[|P^t g(x) - P^t g(y)| = |\mathbb{E}[g(X(t))] - \mathbb{E}[g(Y(t))]| \leq \mathbb{E}[|g(X(t))| + |g(Y(t))|] \mathbb{1}(T > t) \leq \|g\|_f \mathbb{E}[f(X(t)) + f(Y(t))] \mathbb{1}(T > t) \]
Taking the supremum over all \(g \) satisfying \(\|g\|_f \leq 1 \) then gives,
\[
\|P^t(x, \cdot) - P^t(y, \cdot)\|_f \leq E\left[(f(X(t)) + f(Y(t))) \mathbf{1}(T > t) \right], \tag{A.54}
\]
so that on summing over \(t \),
\[
\sum_{t=0}^{\infty} \|P^t(x, \cdot) - P^t(y, \cdot)\|_f \leq \sum_{t=0}^{\infty} E\left[(f(X(t)) + f(Y(t))) \mathbf{1}(T > t) \right]
= E\left[\sum_{t=0}^{T-1} (f(X(t)) + f(Y(t))) \right].
\]

Applying Proposition A.5.1 completes the proof of (ii).

To see (iii) observe that,
\[
\sum_{y \in X} \pi(y) |P^t g(x) - P^t g(y)| \geq \left| \sum_{y \in X} \pi(y) [P^t g(x) - P^t g(y)] \right| = |P^t g(x) - \pi(g)|.
\]
Hence by (ii) we obtain (iii) with \(b_1 = b_0 + 2\pi(V) \).

Finally we prove (i). Note that we only need establish the mean ergodic theorem in (i) for a single initial condition \(x_0 \in X \). To see this, first note that we have the triangle inequality,
\[
\|P^t(x, \cdot) - \pi(\cdot)\|_f \leq \|P^t(x, \cdot) - P^t(x_0, \cdot)\|_f + \|P^t(x_0, \cdot) - \pi(\cdot)\|_f, \quad x, x_0 \in X.
\]
From this bound and Part (ii) we obtain,
\[
\limsup_{t \to \infty} \|P^t(x, \cdot) - \pi(\cdot)\|_f \leq \limsup_{t \to \infty} \|P^t(x_0, \cdot) - \pi(\cdot)\|_f.
\]

Exactly as in (A.54) we have, with \(X(0) = x_0 \) and \(Y(0) \sim \pi \),
\[
\|P^t(x_0, \cdot) - \pi(\cdot)\|_f \leq E\left[(f(X(t)) + f(Y(t))) \mathbf{1}(T > t) \right]. \tag{A.55}
\]
We are left to show that the right hand side converges to zero for some \(x_0 \). Applying Lemma A.5.5 we obtain,
\[
\lim_{t \to \infty} \sum_{x,y} \pi(x)\pi(y) E[(f(X(t)) + f(Y(t))) \mathbf{1}(T > t) \mid X(0) = x, Y(0) = y] = 0.
\]
It follows that the right hand side of (A.55) vanishes as \(t \to \infty \) when \(X(0) = x_0 \) and \(Y(0) \sim \pi \).

So far we have established the mean ergodic theorem. The chain is called \textit{geometrically recurrent} if \(E_{x^*}[\exp(\varepsilon \tau_{x^*})] < \infty \) for some \(\varepsilon > 0 \). For such chains it is shown in Theorem A.5.6 that for a.e. \([\pi] \) initial condition \(x \in X \),
the total variation norm vanishes geometrically fast.
Theorem A.5.6. The following are equivalent for an aperiodic, x^*-irreducible Markov chain:

(i) The chain is geometrically recurrent.

(ii) There exists $V : X \rightarrow [1, \infty]$ with $V(x_0) < \infty$ for some $x_0 \in X$, $\varepsilon > 0$, $b < \infty$, and a finite set $S \subset X$ such that

$$DV(x) \leq -\varepsilon V(x) + b 1_S(x), \quad x \in X.$$ \hspace{1cm} (V4)

(iii) For some $r > 1$, $b < \infty$ such that the stronger mean ergodic theorem holds: For each $x \in X$, $t \in \mathbb{Z}_+$,

$$\| P^t(x, \cdot) - \pi(\cdot) \|_V := \sup_{|g| \leq V} \mathbb{E}_x [g(X(t)) - \pi(t)] \leq b r^{-t} V(x). \quad \hspace{1cm} (A.56)$$

If any of the above conditions hold, then with V given in (ii), we can find $r_0 > 1$ and $b < \infty$ such that the stronger mean ergodic theorem holds: For each $x \in X$, $t \in \mathbb{Z}_+$,

$$\| P^t(x, \cdot) - \pi(\cdot) \|_V := \sup_{|g| \leq V} \mathbb{E}_x [g(X(t)) - \pi(t)] \leq b r_0^{-t} V(x).$$

Proof. Let $\Delta_V = V(X(1)) - V(X(0))$, so that $\mathbb{E}_x [\Delta_V] \leq -1 + b 1_S(x)$ under (V2). Using a second order Taylor expansion we obtain for each x and $\varepsilon > 0$,
\[[V_\varepsilon(x)]^{-1} PV_\varepsilon(x) = E_x[\exp(\varepsilon \Delta V)] \]
\[= E_x[1 + \varepsilon \Delta V + \frac{1}{2} \varepsilon^2 \Delta^2 V \exp(\varepsilon \vartheta \Delta V)] \]
\[\leq 1 + \varepsilon(-1 + bI_S(x)) + \frac{1}{2} \varepsilon^2 E_x[\Delta^2 V \exp(\varepsilon \vartheta \Delta V)] \]
\[\text{(A.57)} \]

where \(\vartheta \in [0, 1] \). Applying the assumed Lipschitz bound and the bound \(\frac{1}{2} \varepsilon^2 \leq \varepsilon^2 \) for \(\varepsilon \geq 0 \) we obtain, for any \(a > 0 \),
\[\frac{1}{2} \Delta^2 V \exp(\varepsilon \vartheta \Delta V) \leq a^{-2} \exp((a + \varepsilon)|\Delta V|) \]
\[\leq a^{-2} \exp((a + \varepsilon)l(V(1) - V(0))) \]

Setting \(a = \varepsilon^{1/3} \) and restricting \(\varepsilon > 0 \) so that \((a + \varepsilon)l(V) \leq \beta_0 \), the bound (A.57) and (iii) then give,
\[[V_\varepsilon(x)]^{-1} PV_\varepsilon(x) \leq (1 - \varepsilon) + \varepsilon bI_S(x) + \varepsilon^{4/3} b_1 \]

This proves the theorem, since we have \(1 - \varepsilon + \varepsilon^{4/3} b_1 < 1 \) for sufficiently small \(\varepsilon > 0 \), and thus (V4) holds for \(V_\varepsilon \).

\[\square \]

A.5.4 Sample paths and limit theorems

We conclude this section with a look at the sample path behavior of partial sums,
\[S_g(n) := \sum_{t=0}^{n-1} g(X(t)) \]
\[\text{(A.58)} \]

We focus on two limit theorems under (V3):

LLN The Strong Law of Large Numbers holds for a function \(g \) if for each initial condition,
\[\lim_{n \to \infty} \frac{1}{n} S_g(n) = \pi(g) \quad \text{a.s.} \]
\[\text{(A.59)} \]

CLT The Central Limit Theorem holds for \(g \) if there exists a constant \(0 < \sigma^2_g < \infty \) such that for each initial condition \(x \in X \),
\[\lim_{n \to \infty} P_x\left\{ \left(n\sigma^2_g \right)^{-1/2} S_g(n) \leq t \right\} = \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx \]
where \(\tilde{g} = g - \pi(g) \). That is, as \(n \to \infty \),
\[(n\sigma^2_g)^{-1/2} S_g(n) \xrightarrow{w} N(0, 1). \]

The LLN is a simple consequence of the coupling techniques already used to prove the mean ergodic theorem when the chain is aperiodic and satisfies (V3). A slightly different form of coupling can be used when the chain is periodic. There is only room for a survey of theory surrounding the CLT, which is most elegantly approached using martingale methods. A relatively complete treatment may be found in [367], and the more recent survey [282].

The following versions of the LLN and CLT are based on Theorem 17.0.1 of [367].
Theorem A.5.8. Suppose that \(X \) is positive Harris recurrent and that the function \(g \) satisfies \(\pi(|g|) < \infty \). Then the LLN holds for this function.

If moreover (V4) holds with \(g^2 \in L_V^\infty \) then,

(i) Letting \(\tilde{g} \) denote the centered function \(\tilde{g} = g - \int g \, d\pi \), the constant

\[
\sigma^2_\tilde{g} := \mathbb{E}_\pi[\tilde{g}^2(X(0))] + 2 \sum_{t=1}^\infty \mathbb{E}_\pi[\tilde{g}(X(0))\tilde{g}(X(t))] \tag{A.60}
\]

is well defined, non-negative and finite, and

\[
\lim_{n \to \infty} \frac{1}{n} \mathbb{E}_\pi[(S_\tilde{g}(n))^2] = \sigma^2_\tilde{g}. \tag{A.61}
\]

(ii) If \(\sigma^2_\tilde{g} = 0 \) then for each initial condition,

\[
\lim_{n \to \infty} \frac{1}{\sqrt{n}} S_\tilde{g}(n) = 0 \quad \text{a.s..}
\]

(iii) If \(\sigma^2_\tilde{g} > 0 \) then the CLT holds for the function \(g \). \(\Box \)

The proof of the theorem in [367] is based on consideration of the martingale,

\[
M_g(t) := \hat{g}(X(t)) - \hat{g}(X(0)) + \sum_{i=0}^{t-1} \hat{g}(X(i)), \quad t \geq 1,
\]

with \(M_g(0) := 0 \). This is a martingale since Poisson’s equation \(P\hat{g} = \hat{g} - \tilde{g} \) gives,

\[
\mathbb{E}[\hat{g}(X(t)) | X(0), \ldots, X(t-1)] = \hat{g}(X(t-1)) - \tilde{g}(X(t-1)),
\]

so that,

\[
\mathbb{E}[M_g(t) | X(0), \ldots, X(t-1)] = M_g(t-1).
\]

The proof of the CLT is based on the representation \(S_\hat{g}(t) = M_g(t) + \hat{g}(X(t)) - \hat{g}(X(0)) \), combined with limit theory for martingales, and the bounds on solutions to Poisson’s equation given in Theorem A.4.5.

An alternate representation for the asymptotic variance can be obtained through the alternate representation for the martingale as the partial sums of a martingale difference sequence,

\[
M_g(t) = \sum_{i=1}^{t} \tilde{\Delta}_g(i), \quad t \geq 1,
\]

with \(\{\tilde{\Delta}_g(t) := \hat{g}(X(t)) - \hat{g}(X(t-1)) + \tilde{g}(X(t-1))\} \). Based on the martingale difference property,

\[
\mathbb{E}[^{\tilde{\Delta}_g(t)} | \mathcal{F}_{t-1}] = 0, \quad t \geq 1,
\]
it follows that these random variables are uncorrelated, so that the variance of M_g can be expressed as the sum,

$$E[(M_g(t))^2] = \sum_{i=1}^{t} E[(\tilde{\Delta}_g(i))^2], \quad t \geq 1.$$

In this way it can be shown that the asymptotic variance is expressed as the steady-state variance of $\tilde{\Delta}_g(i)$. For a proof of (A.62) (under conditions much weaker than assumed in Proposition A.5.9) see [367, Theorem 17.5.3].

Proposition A.5.9. Under the assumptions of Theorem A.5.8 the asymptotic variance can be expressed,

$$\sigma_g^2 = E_{\pi}[(\tilde{\Delta}_g(0))^2] = \pi(\hat{g}^2 - (P\hat{g})^2) = \pi(2g\hat{g} - g^2). \quad (A.62)$$

A.6 Converse theorems

The aim of Section A.5 was to explore the application of (V3) and the coupling method. We now explain why (V3) is necessary as well as sufficient for these ergodic theorems to hold.

Converse theorems abound in the stability theory of Markov chains. Theorem A.6.1 contains one such result: If $\pi(f) < \infty$ then there is a solution to (V3), defined as a certain “value function”. For a x^*-irreducible chain the solution takes the form,

$$PV_f = V_f - f + b_f 1_{x^*}, \quad (A.63)$$

where the Lyapunov function V_f defined in (A.64) is interpreted as the ‘cost to reach the state x^*’. The identity (A.63) is a dynamic programming equation for the shortest path problem described in Section 9.4.1.

Theorem A.6.1. Suppose that X is a x^*-irreducible, positive recurrent Markov chain on X and that $\pi(f) < \infty$, where $f : X \to [1, \infty]$ is given. Then, with

$$V_f(x) := E_x \left[\sum_{t=0}^{\sigma_{x^*}} f(X(t)) \right], \quad x \in X, \quad (A.64)$$

the following conclusions hold:

(i) The set $X_f = \{ x : V_f(x) < \infty \}$ is non-empty and absorbing:

$$P(x,X_f) = 1 \quad \text{for all } x \in X_f.$$

(ii) The identity (A.63) holds with $b_f := E_{x^*} \left[\sum_{t=1}^{\sigma_{x^*}} f(X(t)) \right] < \infty$.

(iii) For \(x \in X_f \),
\[
\lim_{t \to \infty} \frac{1}{t} \mathbb{E}_x[V_f(X(t))] = \lim_{t \to \infty} \mathbb{E}_x[V_f(X(t))1\{\tau_{x^*} > t\}] = 0.
\]

Proof. Applying the Markov property, we obtain for each \(x \in X \),
\[
PV_f(x) = \mathbb{E}_x \left[\mathbb{E}_{X(1)} \left[\sum_{t=0}^{\tau_{x^*}} f(X(t)) \right] \right] \\
= \mathbb{E}_x \left[\mathbb{E} \left[\sum_{t=1}^{\tau_{x^*}} f(X(t)) \mid X(0), X(1) \right] \right] \\
= \mathbb{E}_x \left[\sum_{t=1}^{\tau_{x^*}} f(X(t)) \right] = \mathbb{E}_x \left[\sum_{t=0}^{\tau_{x^*}} f(X(t)) \right] - f(x), \quad x \in X.
\]

On noting that \(\sigma_{x^*} = \tau_{x^*} \) for \(x \neq x^* \), the identity above implies the desired identity in (ii).

Based on (ii) it follows that \(X_f \) is absorbing. It is non-empty since it contains \(x^* \), which proves (i).

To prove the first limit in (iii) we iterate the identity in (ii) to obtain,
\[
\mathbb{E}_x[V_f(X(t))] = P^t V_f(x) = V_f(x) + \sum_{k=0}^{t-1} [-P^k f(x) + b_f P^k(x, x^*)], \quad t \geq 1.
\]

Dividing by \(t \) and letting \(t \to \infty \) we obtain, whenever \(V_f(x) < \infty \),
\[
\lim_{t \to \infty} \frac{1}{t} \mathbb{E}_x[V_f(X(t))] = \lim_{t \to \infty} \frac{1}{t} \sum_{k=0}^{t-1} [-P^k f(x) + b_f P^k(x, x^*)].
\]

Applying (i) and (ii) we conclude that the chain can be restricted to \(X_f \), and the restricted process satisfies (V3). Consequently, the conclusions of the Mean Ergodic Theorem A.5.4 hold for initial conditions \(x \in X_f \), which gives
\[
\lim_{t \to \infty} \frac{1}{t} \mathbb{E}_x[V_f(X(t))] = -\pi(f) + b_f \pi(x^*),
\]
and the right hand side is zero for by (ii).

By the definition of \(V_f \) and the Markov property we have for each \(m \geq 1 \),
\[
V_f(X(m)) = \mathbb{E}_{X(m)} \left[\sum_{t=0}^{\tau_{x^*}} f(X(t)) \right] \\
= \mathbb{E} \left[\sum_{t=m}^{\tau_{x^*}} f(X(t)) \mid \mathcal{F}_m \right], \quad \text{on } \{ \tau_{x^*} \geq m \}.
\]
Moreover, the event \(\{ \tau_{x^*} \geq m \} \) is \(\mathcal{F}_m \) measurable. That is, one can determine if \(X(t) = x^* \) for some \(t \in \{1, \ldots, m\} \) based on \(\mathcal{F}_m := \sigma \{ X(t) : t \leq m \} \). Consequently, by the smoothing property of the conditional expectation,

\[
\mathbb{E}_x[V_f(X(m)) \mathbf{1}_{\{ \tau_{x^*} \geq m \}}] = \mathbb{E} \left[\mathbf{1}_{\{ \tau_{x^*} \geq m \}} \mathbb{E} \left[\sum_{t=m}^{\tau_{x^*}} f(X(t)) \mid \mathcal{F}_m \right] \right] \\
= \mathbb{E} \left[\mathbf{1}_{\{ \tau_{x^*} \geq m \}} \sum_{t=m}^{\tau_{x^*}} f(X(t)) \right] \leq \mathbb{E} \left[\sum_{t=m}^{\tau_{x^*}} f(X(t)) \right]
\]

If \(V_f(x) < \infty \), then the right hand side vanishes as \(m \to \infty \) by the Dominated Convergence Theorem. This proves the second limit in (iii). \(\square \)

Proposition A.6.2. Suppose that the assumptions of Theorem A.6.1 hold: \(X \) is a \(x^* \)-irreducible, positive recurrent Markov chain on \(X \) with \(\pi(f) < \infty \). Suppose that there exists \(g \in L^1_{\infty} \) and \(h \in L^V_f \) satisfying,

\[
Ph = h - g.
\]

Then \(\pi(g) = 0 \), so that \(h \) is a solution to Poisson’s equation with forcing function \(g \). Moreover, for \(x \in X_f \),

\[
h(x) - h(x^*) = \mathbb{E}_x \left[\sum_{t=0}^{\tau_{x^*}-1} g(X(t)) \right]. \tag{A.66}
\]

Proof. Let \(M_h(t) = h(X(t)) - h(X(0)) + \sum_{k=0}^{t-1} g(X(k)) \), \(t \geq 1 \), \(M_h(0) = 0 \). Then \(M_h \) is a zero-mean martingale,

\[
\mathbb{E}[M_h(t)] = 0, \quad \text{and} \quad \mathbb{E}[M_h(t + 1) \mid \mathcal{F}_t] = M_h(t), \quad t \geq 0.
\]

It follows that the stopped process is a martingale,

\[
\mathbb{E}[M_h(\tau_{x^*} \land (r + 1)) \mid \mathcal{F}_r] = M_h(\tau_{x^*} \land r), \quad r \geq 0.
\]

Consequently, for any \(r \),

\[
0 = \mathbb{E}_x[M_h(\tau_{x^*} \land r)] = \mathbb{E}_x \left[h(X(\tau_{x^*} \land r)) - h(X(0)) + \sum_{t=0}^{\tau_{x^*} \land r-1} g(X(t)) \right].
\]

On rearranging terms and subtracting \(h(x^*) \) from both sides,

\[
h(x) - h(x^*) = \mathbb{E}_x \left[(h(X(r)) - h(x^*)) \mathbf{1}_{\{ \tau_{x^*} > r \}} + \sum_{t=0}^{\tau_{x^*} \land r-1} g(X(t)) \right], \tag{A.67}
\]

where we have used the fact that \(h(X(\tau_{x^*} \land t)) = h(x^*) \) on \(\{ \tau_{x^*} \leq t \} \).

Applying Theorem A.6.1 (iii) and the assumption that \(h \in L^V_f \) gives,
\[
\limsup_{r \to \infty} \left| E_x \left((h(X(r)) - h(x^*)) \mathbf{1}_{\{\tau_{x^*} > r\}} \right) \right|
\leq (\|h\|_{V_f} + |h(x^*)|) \limsup_{r \to \infty} E_x [V_f(X(r)) \mathbf{1}_{\{\tau_{x^*} > r\}}] = 0.
\]

Hence by (A.67), for any \(x \in X_f \),

\[
h(x) - h(x^*) = \lim_{r \to \infty} E_x \left[\sum_{t=0}^{\tau_{x^*} \wedge r-1} g(X(t)) \right].
\]

Exchanging the limit and expectation completes the proof. This exchange is justified by the Dominated Convergence Theorem whenever \(V_f(x) < \infty \) since \(g \in L^f_{\infty} \). \(\square \)
List of Figures

1.1 Control issues in a production system .. 11
1.2 The Internet is one of the most complex man-made networks 13
1.3 Control issues in the Internet ... 13
1.4 California power grid .. 15
1.5 Demand is periodic and shows high variability ... 16
1.6 Simulating the random walk .. 23
1.7 Simulation of the M/M/1 queue during a transient. 30
1.8 Simulation of the M/M/1 queue in steady-state. 30
2.1 single server queue .. 35
2.2 Sample paths of the M/M/1 queue and its fluid model 40
2.3 Single-station scheduling problem .. 42
2.4 Multiple-access communication system .. 45
2.5 Achievable rates in communication models ... 45
2.6 Models for the processor-sharing model .. 46
2.7 Simple make-to-stock system ... 47
2.8 Power model with two suppliers providing power to a single utility 48
2.9 Simple re-entrant line ... 49
2.10 Optimal control of the simple fluid re-entrant line. 52
2.11 Control of the simple re-entrant line ... 53
2.12 The Kumar-Seidman-Rybkop-Stolyar model ... 54
2.13 Sample paths of the KSRS model under a priority policy 55
2.14 Simple routing model .. 56
2.15 Trajectories for the simple routing model .. 57
2.16 Starvation and instability in the simple routing model 57
2.17 A routing model with delay .. 59
2.18 Additional choices may lead to increased delay 59
2.19 Delay is doubled when additional choices are presented 60
3.1 Skorokhod representation for the single server queue. 67
3.2 Trajectory of the queue length process conditioned on a large value 87
3.3 Log moment generating function for three distributions 91
4.1 A time-optimal trajectory for the fluid model ... 112
4.2 Velocity space for the processor-sharing model 114
4.3 Tandem queues ... 123
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.14</td>
<td>Coupling of optimal solutions in the simple routing model</td>
<td>248</td>
</tr>
<tr>
<td>6.15</td>
<td>Input-queued switch and a matching of inputs to outputs</td>
<td>254</td>
</tr>
<tr>
<td>6.16</td>
<td>Starvation and instability in the simple routing model</td>
<td>256</td>
</tr>
<tr>
<td>6.17</td>
<td>Optimal policy for the simple routing model</td>
<td>256</td>
</tr>
<tr>
<td>6.18</td>
<td>Monotone region under MaxWeight with and without hedging</td>
<td>258</td>
</tr>
<tr>
<td>6.19</td>
<td>Simulation using MaxWeight with and without hedging</td>
<td>260</td>
</tr>
<tr>
<td>7.1</td>
<td>Demand-driven model with routing, scheduling, and re-work.</td>
<td>266</td>
</tr>
<tr>
<td>7.2</td>
<td>Optimal policies for the complex production system</td>
<td>269</td>
</tr>
<tr>
<td>7.3</td>
<td>Conversion from pull to push</td>
<td>271</td>
</tr>
<tr>
<td>7.4</td>
<td>Velocity space V_0 in the arrival-free model</td>
<td>272</td>
</tr>
<tr>
<td>7.5</td>
<td>Simple re-entrant line with demand</td>
<td>273</td>
</tr>
<tr>
<td>7.6</td>
<td>Simple re-entrant line with demand under the GTO policy</td>
<td>276</td>
</tr>
<tr>
<td>7.7</td>
<td>Demand driven network with two sources of demand</td>
<td>276</td>
</tr>
<tr>
<td>7.8</td>
<td>Individual buffer levels under the GTO policy</td>
<td>278</td>
</tr>
<tr>
<td>7.9</td>
<td>Cumulative buffer levels under the GTO policy</td>
<td>280</td>
</tr>
<tr>
<td>7.10</td>
<td>Cumulative buffer levels for a normal-priority hot-lot</td>
<td>282</td>
</tr>
<tr>
<td>7.11</td>
<td>Subsystem serving the hot-lot</td>
<td>283</td>
</tr>
<tr>
<td>7.12</td>
<td>Cumulative buffer levels for a high-priority hot-lot</td>
<td>284</td>
</tr>
<tr>
<td>7.13</td>
<td>GTO-B and GTO-M policies</td>
<td>285</td>
</tr>
<tr>
<td>7.14</td>
<td>Effective cost for a 1-d relaxation of the 16-buffer model</td>
<td>287</td>
</tr>
<tr>
<td>7.15</td>
<td>Optimal policy for a 1-d relaxation</td>
<td>289</td>
</tr>
<tr>
<td>7.16</td>
<td>Effective cost for the simple re-entrant line with demand</td>
<td>291</td>
</tr>
<tr>
<td>7.17</td>
<td>Effective cost for the 2-d relaxation of the 16-buffer model</td>
<td>293</td>
</tr>
<tr>
<td>7.18</td>
<td>$R^$ contains the monotone region, and R^{GTO} contains $R^$</td>
<td>293</td>
</tr>
<tr>
<td>7.19</td>
<td>Effective cost for the 3-d relaxation of the 16-buffer model</td>
<td>294</td>
</tr>
<tr>
<td>7.20</td>
<td>Ancillary service ramps up at maximal rate when $Q(t) < q^o$.</td>
<td>306</td>
</tr>
<tr>
<td>7.21</td>
<td>Average cost for the CRW and CBM power distribution models</td>
<td>307</td>
</tr>
<tr>
<td>7.22</td>
<td>Optimal policies in a power distribution system</td>
<td>308</td>
</tr>
<tr>
<td>7.23</td>
<td>Optimal switching-curves for a relaxation in Case II.</td>
<td>310</td>
</tr>
<tr>
<td>8.1</td>
<td>Smoothed piecewise linear Lyapunov function</td>
<td>335</td>
</tr>
<tr>
<td>8.2</td>
<td>Fluid value functions for the tandem queue</td>
<td>337</td>
</tr>
<tr>
<td>8.3</td>
<td>Feasibility of the linear test for stability in the KSRS model</td>
<td>355</td>
</tr>
<tr>
<td>9.1</td>
<td>Extreme points in average-cost optimization</td>
<td>390</td>
</tr>
<tr>
<td>9.2</td>
<td>Extreme points in multi-objective average-cost optimization</td>
<td>390</td>
</tr>
<tr>
<td>9.3</td>
<td>Construction of the relative value function</td>
<td>397</td>
</tr>
<tr>
<td>9.4</td>
<td>Convergence of the VIA with quadratic initialization</td>
<td>406</td>
</tr>
<tr>
<td>9.5</td>
<td>Convergence of the VIA initialized with the fluid value function</td>
<td>406</td>
</tr>
<tr>
<td>9.6</td>
<td>Sample paths of the two workload processes</td>
<td>428</td>
</tr>
<tr>
<td>10.1</td>
<td>Service-aware scheduling</td>
<td>445</td>
</tr>
<tr>
<td>11.1</td>
<td>Monte-Carlo estimates for the M/M/1 queue</td>
<td>486</td>
</tr>
<tr>
<td>11.2</td>
<td>Monte-Carlo estimates for the M/M/1 queue with c exponential</td>
<td>489</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>11.3</td>
<td>Estimates of the steady-state customer population for the KSRS model.</td>
<td>490</td>
</tr>
<tr>
<td>11.4</td>
<td>Log moment generating function and rate function</td>
<td>493</td>
</tr>
<tr>
<td>11.5</td>
<td>Log moment generating function and rate function for the CRW queue</td>
<td>499</td>
</tr>
<tr>
<td>11.6</td>
<td>Monte-Carlo estimates for the CRW queue</td>
<td>506</td>
</tr>
<tr>
<td>11.7</td>
<td>Estimates obtained using the smoothed estimator</td>
<td>507</td>
</tr>
<tr>
<td>11.8</td>
<td>Smoothed estimates for the M/M/1 queue</td>
<td>508</td>
</tr>
<tr>
<td>11.9</td>
<td>Estimates obtained using the smoothed estimator for the KSRS model</td>
<td>514</td>
</tr>
<tr>
<td>11.10</td>
<td>LSTD estimates for value function approximation in the M/M/1 queue</td>
<td>528</td>
</tr>
<tr>
<td>11.11</td>
<td>LSTD estimates for optimizing shadow functions in the M/M/1 queue</td>
<td>531</td>
</tr>
<tr>
<td>A.1</td>
<td>$V(X(t))$ is decreasing outside of the set S.</td>
<td>553</td>
</tr>
</tbody>
</table>
Bibliography

[130] J. G. Dai and W. Lin. Maximum pressure policies in stochastic processing net-

[131] J. G. Dai and S. P. Meyn. Stability and convergence of moments for multi-

[136] Y. Dallery and S. B. Gershwin. Manufacturing flow line systems: a review of

[138] G. B. Dantzig, Jon Folkman, and Norman Shapiro. On the continuity of the
548, 1967.

[139] D. P. de Farias and B. Van Roy. The linear programming approach to approxi-

[140] Y. De Serres. Simultaneous optimization of flow control and scheduling in a

Index

L^1 space, 21
L^∞ space, 21
σ-field, 21
c-\mu rule, 42
(V2), 320, 553
(V3), 63, 320, 557
(V4), 331, 565
$J(x)$, 116
$J_y(x)$, 117
$T(x)$, 116
T^*, 214
W^*, 214
Ξ : Workload matrix, 111
ρ_* : Network load, 62, 111, 215
σ_{x^*} : First entrance time, 324, 544
τ_{x^*} : First return time, 324, 544
ξ : Workload vector, 51, 111, 216
$q^\kappa(t;x) = \kappa^{-1}Q(\kappa t;\kappa x)$, 69
$x^\kappa(t;x) = \kappa^{-1}X(\kappa t;\kappa x)$, 69

Absorbing, 327, 547
Action space, 374
Activity, 214
Admissible, 214
Admissible policy, 110
Allocation
 A. rate, 214
 A. sequence, 37
 Cumulative a. process, 17, 36, 40
 Equilibrium a. rate, 215
ALOHA model, 45
Aperiodic, 541
Asymptotic variance, 30, 487, 568
Asymptotically unbiased, 486
Average cost, 108, 321
Azuma’s Inequality, 26, 448
Bandit, 61

Base-stock, 47
Bellman-Growwall Lemma, 449
Bottleneck, 51, 111, 223
 B. resource, 223, 249
 Dynamic b., 118, 276
Brownian motion, 23
 CBM, 191, 360
 Reflected (RBM), 23, 39, 71
Busy time, 36

Central Limit Theorem, 29, 566
 Asymptotic variance, 30, 487, 568
 CLT for martingales, 27
 Functional CLT, 27
Centralized control, 33
Chernoff’s bound, 492
Coefficient of variation, 74
Coercive, 320, 498
Communicating class, 547
Comparison Theorem, 65, 74, 542, 556
Constituency matrix, 17, 99
Control variate, 489
Controlled random walk (CRW), 37
Controlled transition matrix, 374
Coupling, 68, 249, 560
 C. Inequality, 562
 C. time, 249, 561
Criss-cross network, 155, 211
Curse of dimensionality, 100
Customer, 17
Cut, 230

Differential inclusion, 110
Doeblin decomposition, 325
Draining time
Minimal, 63, 110, 214
Minimal time to reach \(y \) from \(x \), 110

Drift
- D. criterion (V3), 63
- D. criterion (V4), 331
- D. vector, 191, 333, 555
- Foster’s d. criterion, 63
- Multistep d. criterion, 32
- State dependent d., 559

Dynamic programming equation, 117
- Flow model, 233
- Infinite-horizon, 117

Effective bandwidth, 98
Effective cost, 243
Effective state, 175
Eligibility vector, 521, 524
Empirical measure, 385
Equivalent to a quadratic, 438
Ergodicity, 560
- V-uniform, 331

Examples
- Air traffic scheduling, 237
- ALOHA communications model, 45, 226, 242, 265, 434, 535
- Complex demand-driven model, 278, 290, 292, 311
- Criss-cross network, 155, 211
- Dai-Wang model, 140, 190
- Input-queued switch, 238, 242, 245, 254
- Klimov model, 41, 113, 391, 443
- Kumar-Seidman-Rybko-Stolyar model with demand, 276
- M/M/1 queue, 30, 330, 508, 528, 531
- Minimality in three-station network, 170
- Optimality equations for single server queue, 133
- Phase-type distribution, 155, 372, 483, 535, 537
- Power distribution system, 47, 304

Processor sharing, 46, 113, 139, 169
Queue with redundant activities, 224
Simple inventory model, 47, 299
Simple link-constrained model, 230
Simple re-entrant line, 49, 103, 114, 126, 130, 135, 137, 148, 179, 186, 192, 202, 308, 354, 356, 405, 441, 510, 512
Simple re-entrant line with demand, 273, 275, 286, 288, 290, 301
Simple routing model, 56, 225, 234, 242, 245, 248, 255, 441
Single-station demand-driven model, 270, 272
Tandem queues, 123, 132, 133, 150, 177, 443, 470
Exchangeable state, 175, 244

Feedback law, 105
FIFO service discipline, 36, 154
First entrance time, 324, 544
First return time, 324, 544
Fluid estimator, 511
Fluid limit model, 438, 449
Fluid model, 18, 40
Fluid-scale asymptotic optimality, 439
Forcing function, 542
Foster’s criterion, 320
Foster-Lyapunov criteria, 552
Free process, 66
Full, 327
Fundamental matrix, 370, 550

Generator, 319, 540
- Differential g., 361
- Extended g., 361

GI/G/1 queue, 36
Greedy (see ‘myopic’), 42, 122

Harris recurrent, 550
Heavy traffic, 71
Heavy-traffic, 32, 38
Hedging, 101
- H. point, 47, 200

Height process, 201
Homogeneous station, 102
Pull model, 267
Quadratic estimator, 508
Random walk, 22
Reflected r.w., 22
Rate function, 89
RBM, 71
Generator, 361
Invariant measure, 85
Poisson’s equation, 85
Re-entrant line, 49, 103
Regular
\(c-r., \) 557
\(f-r., \) 320
R. policy, 320
Renewal process, 24
Resolvent, 82, 540
Equation, 545, 547
R. matrix, 370, 544
Resource, 17, 214
Bottleneck r., 249
Exit-r., 270
Pooled r., 223
Supply-r., 270
Resource pooling, 223, 229
Reversible, 323, 485
Round-robin, 143
Routing matrix, 100
Safety-stock, 101, 136, 461
Server, 17
Shadow function, 490
Shortest path problem (SPP), 392, 568
Simultaneous resource possession, 236
Single server queue
\(G_1/D/1, \) 95
\(G_1/G/1, \) 36
\(G_1/M/1, \) 95
\(M/M/\infty, \) 96, 535
\(M/M/n, \) 96, 534
\(M/M/1, \) 30, 77
Skip-free, 555
in mean-square, 328, 559
in the mean, 555
Skorokhod map, 62, 66, 193
Smoothed estimator, 307, 490
Stability, 10, 31, 106
Stabilizable, 110, 214
Stabilizing, 108, 321
Starvation, 59
State space collapse, 175
Station, 99
 Homogeneous s., 110
Steady-state mean, 29
Stochastic approximation, 486
Stopping time, 28, 556
Strongly consistent, 486

Tandem queues, 123
Temporal difference (TD) learning, 491, 516
Temporal differences, 524
Terminal penalty function, 402
Total cost, 63, 392
Total-variation norm, 562
 f-t.-v. n., 562
Traveling salesman problem, 232

Unconstrained process, 201
Uniformization
 M/M/1 queue, 37
 Networks, 103

Value function
 Discounted-cost, 81, 107, 394, 540
 Fluid, 19
 Fluid (discounted), 117
 Fluid (total cost), 116
 Relative, 29, 108, 375, 542
 Total cost, 52
Value iteration, 233
Vector load, 111
Virtual buffer, 17
Virtual station, 54

Weak convergence, 27
Weakly unstable, 439
Workload, 3, 223
 CBM w. model, 360, 474
 Unconditional w., 160
 Units of inventory, 163

Units of time, 51
Virtual w. process, 55
W. matrix, 111, 240, 274
W. process, 111, 240
W. relaxation, 3, 159, 240
W. relaxation for CRW model, 189
W. space, 167, 240
W. space for CRW model, 189
W. vector, 51, 111, 218, 271