Metastability and Complex Eigenvalues for Markov processes

Sean Meyn

Department of Electrical and Computer Engineering
University of Illinois
and the Coordinated Science Laboratory

Joint work with George Mathew and Greg Hagen
Outline

I Markov Process Assumptions
II Metastability
III Complex Spectra
IV Quasi-Periodic Orbits
V Conclusions
Markov Process Assumptions

- Aperiodic, hypoelliptic diffusion. The state space \mathbb{X} is an open, connected subset of \mathbb{R}^d.

- Differential generator $\mathcal{D} = u \cdot \nabla + \frac{1}{2} \text{trace} (\Sigma \nabla^2)$.

For C^2 functions

$$\mathcal{D}h = \sum_i u_i(x) \frac{d}{dx_i} h(x) + \frac{1}{2} \sum_{ij} \Sigma_{ij}(x) \frac{d^2}{dx_i dx_j} h(x)$$
Markov Process Assumptions

- Aperiodic, hypoelliptic diffusion. The state space X is an open, connected subset of \mathbb{R}^d

- Differential generator $\mathcal{D} = u \cdot \nabla + \frac{1}{2} \text{trace} (\Sigma \nabla^2)$.

 For C^2 functions

 $\mathcal{D}h = \sum_i u_i(x) \frac{d}{dx_i} h(x) + \frac{1}{2} \sum_{ij} \Sigma_{ij}(x) \frac{d^2}{dx_i dx_j} h(x)$

- Condition (V4): For constants $b < \infty$, $\Gamma > 0$, a compact set $K \subset X$, and a function $V : X \rightarrow [1, \infty)$

 $\mathcal{D}V \leq -\Gamma V + b 1_K$
Ornstein-Uhlenbeck Process

\[dX(t) = AX(t)dt + BdN(t) \]

- Hypo-elliptic: \((A, B)\) controllable
- Differential generator:
 \[Dh = \sum_i (Ax)_i \frac{d}{dx_i} h(x) + \frac{1}{2} \sum_{ij} (BB^T)_{ij} \frac{d^2}{dx_i dx_j} h(x) \]
- Condition (V4): \(\lambda(A) < -\bar{\Gamma} < 0 \)
 \[V(x) = 1 + \frac{1}{2} x^T M x \quad M > 0 \quad A^T M + MA = -I \]
 \[\mathcal{D}V \leq -\bar{\Gamma} V + b 1_K \]
Eigenfunction Assumptions

For an open set M and a function $h: \mathbb{X} \rightarrow \mathbb{R}$, $\Gamma_0 < \bar{\Gamma}$,

$$\mathcal{D}h(x) = -\Gamma_0 h(x) \quad \text{for } x \in M.$$

- h is C^2 in a neighborhood of the closure \bar{M}
- Positive on M
- Zero on the boundary of M
- $\nabla h \neq 0$ for $x \in \partial M$.
Outline

I Markov Process Assumptions

II Metastability

III Complex Spectra

IV Quasi-Periodic Orbits

V Conclusions
Twisted Process

\[\mathcal{D} h(x) = -\Gamma_0 h(x) \quad \text{for } x \in \mathbb{M}. \]

Doob’s \(h \)-transform:

\[\mathcal{D} = I_{h^{-1}} \mathcal{D} I_h + \Gamma_0 I \]

\(I_h \) is the multiplication operator: \(I_h g = h \cdot g \)
Twisted Process

Doob’s h-transform: \[
\tilde{\mathcal{D}} = I_{h^{-1}} \mathcal{D} I_h + \Gamma_0 I
\]

Defines a differential generator for a diffusion \tilde{X} on \mathbb{X},

\[
\tilde{\mathcal{D}} = \mathcal{D} + \langle \Sigma(\nabla H), \nabla \rangle,
\]

\[
H(x) = \log(h(x))
\]
Twisted Process

Doob’s h-transform: \[\mathcal{D} h(x) = -\Gamma_0 h(x) \quad \text{for } x \in M. \]

Doob’s h-transform:
\[
\mathcal{D} = I_{h^{-1}} \mathcal{D} I_h + \Gamma_0 I \\
= \mathcal{D} + \langle \Sigma(\nabla H), \nabla \rangle
\]

Representation w.r.t. X: For any bounded function g,
\[
\mathcal{E}_x[g(\tilde{X}(t))] := \mathbb{E}_x[m_h(t)g(X(t))\mathbf{1}(T_\bullet > t)]
\]

where T_\bullet is the first exit time from M, and
\[
m_h(t) := h(x)^{-1}h(X(t))e^{\Gamma_0 t}, \quad t \in \mathbb{T}
\]
Ornstein-Uhlenbeck Process

In one dimension: \(dX(t) = -aX(t)\,dt + \sigma\,dN(t) \)

Differential generator: \(\mathcal{D} = -ax\frac{d}{dx} + \frac{1}{2}\sigma^2\frac{d^2}{dx^2} \)

Eigenvalues:
\[\{ \Lambda_k = -(k - 1)a : k = 1, 2, \ldots \} \]

First four eigenfunctions:
\[h_1 \equiv 1 \]
\[h_3(x) = \frac{1}{2}x^2 - \frac{\sigma^2}{4a} \]
\[h_2(x) = x \]
\[h_4(x) = \frac{1}{3}x^3 - \frac{\sigma^2}{2a}x \]
Ornstein-Uhlenbeck Process

In one dimension: \[dX(t) = -aX(t)dt + \sigma dN(t) \]

Differential generator:
\[\mathcal{D} = -ax \frac{d}{dx} + \frac{1}{2} \sigma^2 \frac{d^2}{dx^2} \]

Second eigenvalue: \[\Lambda_2 = -a \]
Second eigenfunction: \[h_2(x) = x \]

Generator for twisted process using \(h_2 \):
\[\tilde{\mathcal{D}} = \mathcal{D} + \sigma^2 H'_2 dx = (-ax + \sigma^2/x)dx + \frac{1}{2} \sigma^2 dx^2 \]

Twisted process is ergodic on the positive real line \(\mathbb{R}_+ \)
Ergodicity of the Twisted Process

Twisted process is \tilde{V}-uniformly ergodic

$$\tilde{V} := h^{-1}(V + e^{\alpha H}) = h^{-1}(V + h^\alpha)$$

$\alpha < 1$
Ergodicity of the Twisted Process

Twisted process is \tilde{V}-uniformly ergodic

$$\tilde{V} := h^{-1}(V + e^{\alpha H}) = h^{-1}(V + h^\alpha)$$

$\alpha < 1$

$$\tilde{\mathcal{D}} \tilde{V} \leq -\frac{1}{2}(\Gamma - \Gamma_0) h^{-1} V + h^{-1} b \mathbf{1}_K$$

$$+ h^{\alpha-1} \left[(1 - \alpha) \Gamma_0 + \frac{1}{2}(\Gamma - \Gamma_0) + bh^{-\alpha} \mathbf{1}_K
- \frac{1}{2}(\Gamma - \Gamma_0)V h^{-\alpha}
- \frac{1}{2}h^{-2}\alpha(1 - \alpha) \nabla h^T \Sigma \nabla h \right]$$

$$\leq -\frac{1}{2}(\Gamma - \Gamma_0) \tilde{V} + b_0 \mathbf{1}_{K_{n_0}}$$

K_{n_0} compact subset of M (sublevel set of H)
Ergodicity of the Twisted Process: Consequences

Based on \tilde{V}-ergodicity of the twisted process and the representation of X and \tilde{X} statistics we obtain:

The exit time from M is approximately exponentially distributed:

$$P_x\left\{ \exp \left(\beta (T_\bullet - T) \right) \mid T_\bullet > T \right\} = \frac{\Gamma_0}{\Gamma_0 - \beta} + \mathcal{E}(x, T)$$

$$E_x[f(X(T)) \mid T_\bullet > T] = \tilde{\pi}(f) + \mathcal{E}(x, T)$$

MGF for exponential rv

Quasi steady-state on M

$$\mathcal{E} = O\left(v(x)h(x)^{-1}e^{-cT} \right)$$

Huisinga M. Schuette '03
Outline

I Markov Process Assumptions
II Metastability
III Complex Spectra
IV Quasi-Periodic Orbits
V Conclusions
Complex Eigenvalues

Suppose that Λ is a complex eigenvalue, written as

$$\Lambda = -\Gamma + i\vartheta$$

with $\Gamma > 0$, and $\vartheta \neq 0$.
Periodicity

Consider sampled process, or skeleton chain,

\[X(\beta + \tau k) \quad k = 0, 1, 2, \ldots \]

\(\tau \): Sampling time

Eigenvalues in unit circle:

\[\lambda = e^{\tau \Lambda} \]

\[\Lambda = -\Gamma + iv\theta \]

If \(\Gamma = 0 \) then periodicity ...
Periodicity

Eigenvalue on unit circle $\lambda = e^{i\tau\vartheta}$

Periodicity

Sampling time $\tau = 2\pi\vartheta^{-1}$
Periodicity

Eigenvalue on unit circle \(\Rightarrow \) Periodicity

Sampling time

\[\tau = 2\pi \theta^{-1} \]

\[\lambda = e^{i\tau \theta} \]

\[\Rightarrow \text{Skeleton chain} \]

\[X(\beta + \tau k) \]

is ergodic on subset \(X_\beta \)
Periodicity

Eigenvalue on unit circle \rightarrow Periodicity \rightarrow Sampling time

$\lambda = e^{i\tau \theta}$

Skeleton chain is ergodic on subset X_{β}

Distinct skeleton chains are mutually singular:

$X_{\beta_1} \cap X_{\beta_2} = \emptyset \quad \beta_1 \neq \beta_2$

$\tau = 2 \pi \theta^{-1}$
Procedure: 1. Compute POD modes from given data.

2. Observe time-evolution of first two POD coefficients (projection of data onto first two POD modes)

3. Construct Perfect-Prediction Markov model
Markov Model from Jet Engine Data

Procedure:
1. Compute POD modes from given data.
2. Observe time-evolution of first two POD coefficients (projection of data onto first two POD modes)
3. Construct Perfect-Prediction Markov model

Phase portrait of first two POD coefficients
Invariant measure for Markov model
Spectrum from Jet Engine Model

\[\lambda = e^{\tau \Lambda} \]

\(\tau \): Sampling time
\(\Lambda = -\Gamma + iv^\theta \)
Phase of second eigenfunction:
Degenerate model: Spectrum of skeleton is entirely real

Spectrum from Jet Engine Model

Spectrum of P

Spectrum of P^{67}
I Markov Process Assumptions
II Metastability
III Complex Spectra
IV Quasi-Periodic Orbits
V Conclusions
Suppose that Λ is a complex eigenvalue, written as

$$\Lambda = -\Gamma + iv$$

with $\Gamma > 0$, and $v \neq 0$.

Introduce the clock process:

$$\Phi(t) = \Phi(0)e^{ivt}, \quad t \geq 0$$
Complex Eigenvalues

Suppose that Λ is a complex eigenvalue, written as

$$\Lambda = -\Gamma + iv\vartheta$$

with $\Gamma > 0$, and $\vartheta \neq 0$.

Introduce the clock process:

$$\Phi(t) = \Phi(0)e^{i\vartheta t}, \quad t \geq 0$$

Bivariate process is another diffusion:

$$Y(t) = \begin{pmatrix} X(t) \\ \Phi(t) \end{pmatrix}, \quad t \geq 0$$

Its spectrum is continuous, since this is true for Φ.
Suppose that \(h \) is an eigenfunction for \(X \)

Define for real-valued \(\beta \in \mathbb{R} \)

\[
g_\beta(y) = \text{Re} \left(\left(e^{i\beta}/\phi \right) h(x) \right), \quad y = (x, \phi) \in Y
\]
Suppose that \(h \) is an eigenfunction for \(X \)

Define for real-valued \(\beta \in \mathbb{R} \)

\[
g_\beta(y) = \text{Re} \left(\frac{e^{i\beta}}{\phi} h(x) \right), \quad y = (x, \phi) \in Y
\]

Proposition: The function \(g_\beta \) is an eigenfunction for \(Y \), with real eigenvalue

\[
\Lambda_Y = -\Gamma
\]
Suppose that h is an eigenfunction for X.

Define for real-valued $\beta \in \mathbb{R}$

$$g_\beta(y) = \Re \left(\left(e^{i\beta} / \phi \right) h(x) \right), \quad y = (x, \phi) \in Y$$

Proposition: The function g_β is an eigenfunction for Y, with real eigenvalue

$$\Lambda_Y = -\Gamma$$

Conclusion: We can define a twisted process, provided we can verify previous assumptions.
EigenfunctionTranslation

\[Y(t) = \begin{pmatrix} X(t) \\ \Phi(t) \end{pmatrix} \]

\[M \subset Y \text{ is an open connected component of } \{ y \in Y : g_0(y) > 0 \} \]

\[g_\beta(y) = \text{Re} \left((e^{i\beta} / \phi) h(x) \right) \]
Eigenfunction Translation

\[Y(t) = \begin{pmatrix} X(t) \\ \Phi(t) \end{pmatrix} \]

\[g_\beta(y) = \text{Re} \left(\left(e^{i\beta} / \phi \right) h(x) \right) \]

\(M \subset Y \) is an open connected component of

\[\{ y \in Y : g_0(y) > 0 \} \]

Assume as before:

- \(h \) and hence \(g_\beta \) is \(C^2 \)
- \(g_0 \) positive on \(M \)
- \(g_0 \) zero on the boundary of \(M \)
\[Y(t) = \begin{pmatrix} X(t) \\ \Phi(t) \end{pmatrix} \]

\[g_\beta(y) = \text{Re} \left((e^{i\beta}/\phi)h(x) \right) \]

\(M \subset Y \) is an open connected component of
\[\{ y \in Y : g_0(y) > 0 \} \]

Assume as before:

- \(h \) and hence \(g_\beta \) is \(C^2 \)
- \(g_0 \) positive on \(M \)
- \(g_0 \) zero on the boundary of \(M \)

Strengthen remaining assumptions:

- Ellipticity: \(\Sigma(x) > 0 \) for all \(x \)
- \(\nabla_x g_0(y) = \text{Re} \left(\phi^{-1}\nabla h(x) \right) \neq 0 \) for all \(y = (x, \phi) \in \partial M \)
Metastability

\[Y(t) = \begin{pmatrix} X(t) \\ \Phi(t) \end{pmatrix} \]

\(Y(t) \) remains in the set \(M \) for a time period approximately exponentially distributed, with parameter \(\Gamma \)
Metastability

\[Y(t) = \begin{pmatrix} X(t) \\ \Phi(t) \end{pmatrix} \]

\(Y(t) \) remains in the set \(M \) for a time period approximately exponentially distributed, with parameter \(\Gamma \).

\(X(t) \) remains in a set-valued periodic orbit for the same time period.
Phase of second eigenfunction:

\[e^{-i\vartheta t} h(X(t)) \]

remains positive-real for exp. distributed period
Outline

I Markov Process Assumptions
II Metastability
III Complex Spectra
IV Quasi-Periodic Orbits
V Conclusions
Conclusions

Main result:

Complex spectra carry wealth of information!

When there is a spectral gap then trajectory evolves as a quasi-periodic orbit, lasting approximately \(\exp(\Gamma) \) seconds.

Questions:

Examples, Applications:

- Dynamical insight, optimization, inference

Learning:

- Insight for non-Markov models & perfect prediction
- Error bounds for learning coarse Markov model