Computable Exponential Bounds for Markov Chains and MCMC Simulation

Ioannis Kontoyiannis
Athens Univ of Econ & Business

joint work with
S.P. Meyn, L.A. Lastras-Montaño

Probability Seminar, Columbia University, December 2007
Outline

1. Nonasymptotic Bounds for Markov Chains
 Motivation: Markov Chain Monte Carlo

2. A General Information-Theoretic Bound
 Csiszár’s Lemma and Jensen’s inequality

3. Large Deviations Bounds: Analysis & Optimization
 Doeblin chains
 An (MCMC) example of the Gibbs sampler
 Geometrically ergodic chains
 \[\sim \] Controlling averages and excursions
 A general MCMC sampling criterion

4. The i.i.d. case: A geometrical explanation
Motivation

A Common Task

Calculate the expectation $E_\pi(F) = \sum_{x \in S} \pi(x)F(x)$ of a given $F : S \to \mathbb{R}$.

In many cases, the distribution $\pi = (\pi(x) ; x \in S)$ is known explicitly but it’s **impossible** to calculate its values in practice.

Typical in Bayesian stat, statistical mechanics, networks, image processing, . . .

Markov Chain Monte Carlo

It is often simple to construct an ergodic Markov chain $\{X_1, X_2, \ldots\}$ with stationary distribution π.

In that case, we estimate $E_\pi(F)$ by the partial sums $\frac{1}{n} \sum_{i=1}^{n} F(X_i)$.

Problem

How long a simulation sample n do we need for an accurate estimate?
The Setting: Deviation Bounds for Markov Chains

We have

Ergodic Markov chain \(\{X_1, X_2, \ldots \} \), discrete state-space \(S \) [for simplicity]

Transition kernel \(P(x, y) = \Pr\{X_{n+1} = y | X_n = x\} \), initial condition \(x_1 \in S \)

Stationary distribution \(\pi = (\pi(x) ; x \in S) \)

Goal

Find explicit, computable, nonasymptotic bounds on

\[
\Pr\left\{ \frac{1}{n} \sum_{i=1}^{n} F(X_i) \geq E_\pi(F) + \epsilon \right\}
\]

\(\sim \) In MCMC, this leads to precise performance guarantees and sampling criteria (or stopping rules)

\(\sim \) Similar questions appear in numerous other applications
A General Information-Theoretic Bound

Let

\[H(P \| Q) = \sum_{x \in S} P(x) \log \frac{P(x)}{Q(x)} = \text{relative entropy} \]

\[\| P - Q \| = \sum_{x \in S} |P(x) - Q(x)| = 2 \times [\text{total variation distance}] \]
A General Information-Theoretic Bound

Let
\[H(P\|Q) = \sum_{x \in S} P(x) \log \frac{P(x)}{Q(x)} = \text{relative entropy} \]
\[\|P - Q\| = \sum_{x \in S} |P(x) - Q(x)| = 2 \times [\text{total variation distance}] \]

Theorem 1

For any Markov chain \(\{X_n\} \), any function \(F : S \to \mathbb{R} \) bounded above, any \(c > 0 \) and any initial condition \(X_1 = x_1 \), we have

\[
\log \Pr \left\{ \frac{1}{n} \sum_{i=1}^{n} F(X_i) \geq c \right\} \leq -(n - 1) H(W\|W^1 \times P)
\]

for some bivariate distribution \(W = (W(x, y)) \) on \(S \times S \) with marginals \(W^1 \) and \(W^2 \) that satisfy

\[
\|W^1 - W^2\| \leq \frac{2}{n - 1} \quad \text{and} \quad E_{W^1}(F') \geq c - \frac{\sup_x F(x)}{n - 1}
\]

and \(W^1 \times P \) denotes the bivariate distr \((W^1 \times P)(x, y) = W^1(x)P(x, y) \).
Interpretation

Our result

To *use* the above bound, we need to look at

$$\log \Pr \left\{ \frac{1}{n} \sum_{i=1}^{n} F(X_i) \geq c \right\} \leq -(n-1) \inf_{W} H(W\|W^1 \times P)$$

over all W s.t.

$$\|W^1 - W^2\| \leq \frac{2}{n-1} \quad \text{and} \quad E_{W^1}(F) \geq c - \frac{\sup_x F(x)}{n-1}$$
Interpretation

Our result

To use the above bound, we need to look at
\[
\log \Pr \left\{ \frac{1}{n} \sum_{i=1}^{n} F(X_i) \geq c \right\} \leq -(n - 1) \inf_{W} H(W\|W^1 \times P)
\]
over all \(W\) s.t.
\[
\|W^1 - W^2\| \leq \frac{2}{n - 1} \quad \text{and} \quad E_{W^1}(F) \geq c - \frac{\sup_{x} F(x)}{n - 1}
\]

Donsker and Varadhan’s classic result

For a very restricted class of chains, asymptotically in \(n\)
\[
\log \Pr \left\{ \frac{1}{n} \sum_{i=1}^{n} F(X_i) \geq c \right\} \approx -n \inf_{W} H(W\|W^1 \times P)
\]
over all \(W\) s.t. \(W^1 = W^2\) and \(E_{W^1}(F) \geq c\)
Remarks

Theorem 1 offers an elementary yet general explanation of Donsker and Varadhan’s exponent and their upper bound.
The result and proof are *outrageously* general and simple.
Remarks

Theorem 1 offers an elementary yet general explanation of Donsker and Varadhan’s exponent and their upper bound.

The result and proof are outrageously general and simple.

Proof.

Step 1. Csiszár’s Lemma. Let p be an arbitrary probability measure on any probability space, and E any event with $p(E) > 0$. Let $p|_E$ denote the corresponding conditional measure. Then:

$$\log p(E) = -H(p|_E||p)$$
Remarks

\[\sim\] Theorem 1 offers an elementary yet general explanation of Donsker and Varadhan’s exponent and their upper bound

\[\sim\] The result and proof are outrageously general and simple

Proof.

Step 1. Csiszár’s Lemma. Let \(p \) be an arbitrary probability measure on any probability space, and \(E \) any event with \(p(E) > 0 \). Let \(p|_E \) denote the corresponding conditional measure. Then:

\[
\log p(E) = -H(p|_E \| p)
\]

With \(p = \) distribution of \((X_1, X_2, \ldots, X_n)\)
and \(E = \left\{ \frac{1}{n} \sum_{i=1}^{n} F(X_i) \geq c \right\} \):

\[
\log \Pr \left\{ \frac{1}{n} \sum_{i=1}^{n} F(X_i) \geq c \right\} = -H(p|_E \| p)
\]
Proof cont’d

Step II.

Write \(p|_E \) as a product of conditionals and \(p \) as a product of \textit{bivariate} conditionals.

Expanding the log in \(H(p|_E \| p) \) (“chain rule”)

transforms this relative entropy between \(n \)-dimensional distributions into a sum of relative entropies between bivariate ones.

\[
\log \Pr \left\{ \frac{1}{n} \sum_{i=1}^{n} F(X_i) \geq c \right\} = - \sum_{i=1}^{n-1} H(p^{i,i+1} \| p^i \times P)
\]
Proof cont’d

Step II.

Write $p|_E$ as a product of conditionals and p as a product of \textit{bivariate} conditionals

Expanding the log in $H(p|_E\|p)$ ("chain rule")

transforms this relative entropy between \textit{n}-dimensional distributions into a sum of relative entropies between \textit{bivariate} ones

$$\log \Pr \left\{ \frac{1}{n} \sum_{i=1}^{n} F(X_i) \geq c \right\} = - \sum_{i=1}^{n-1} H(p^{i,i+1}\| p^i \times P)$$

Step III.

Use convexity (Jensen) to simplify and combine into

$$\log \Pr \left\{ \frac{1}{n} \sum_{i=1}^{n} F(X_i) \geq c \right\} \leq -(n-1) H(W\| W^i \times P)$$

Check W has the required properties \hfill \Box
The “Nicest” Chains

Doeblin chains

Defn A Markov chain \(\{X_n\} \) on a general alphabet is called a *Doeblin* chain iff it converges to equilibrium exponentially fast, uniformly in the initial condition \(X_1 = x_1 \), i.e., iff

\[
\sup_{x \in S} \sum_{y \in S} |P^n(x, y) - \pi(y)| \to 0 \quad \text{exponentially fast}
\]

Equivalent characterization There exists a number of steps \(m \), a probability measure \(\rho \), and \(\alpha > 0 \), such that:

\[
\Pr\{X_m \in E \mid X_1 = x_1\} \geq \alpha \rho(E) \quad \text{for all } x_1, E
\]

\[\sim\] Doeblin chains *don’t* satisfy the Donsker-Varadhan conditions

\[\sim\] They *don’t even* satisfy the usual large deviations principle!
Theorem 2

For any Doeblin chain \(\{X_n\} \), any bounded function \(F : S \to \mathbb{R} \), any \(\epsilon > 0 \), and any initial condition \(X_1 = x_1 \), we have

\[
\log \Pr \left\{ \frac{1}{n} \sum_{i=1}^{n} F(X_i) \geq E_\pi(F) + \epsilon \right\} \leq -(n - 1) \frac{1}{2} \left[\left(\frac{\alpha}{m F_{\text{max}}} \right) \epsilon - \frac{3}{n - 1} \right]^2
\]

where \(F_{\text{max}} = \sup_x |F(x)| \)

\(\sim \) In the case of i.i.d. \(\{X_n\} \), Theorem 3 essentially reduces to Hoeffding’s bound, which is tight in that case

\(\sim \) In the general case, this is the best bound known to date, improving [Glynn & Ormoneit 2002] by a factor of 2 in the exponent
Note

$$\log \Pr \left\{ \frac{1}{n} \sum_{i=1}^{n} F(X_i) \geq E_{\pi}(F) + \epsilon \right\} \leq -(n - 1) \frac{1}{2} \left[\left(\frac{\alpha}{m F_{\text{max}}} \right) \epsilon - \frac{3}{n - 1} \right]^2$$

\sim Bound only depends on F via its maximum

\sim Explicit exponent, quadratic in ϵ

\sim Bound only depends on the chain via α, m

\sim Good convergence estimates \Rightarrow good bounds on α, m

\Rightarrow better exponents
Proof outline

Step I. From Theorem 1 we get

\[
\log \Pr \left\{ \frac{1}{n} \sum_{i=1}^{n} F(X_i) \geq E_\pi(F) + \epsilon \right\} \leq -(n - 1)H(W\|W^1 \times P)
\]

for an appropriate \(W \)

Step II. Using Pinsker’s and then Jensen’s inequality we bound

\[
H(W\|W^1 \times P) \geq \frac{1}{2} \left[\sum_{x,y} W^1(x)|P(x,y) - W(y|x)| \right]^2 \quad (*)
\]

Step III. Lemma. For any row vector \(v \) with \(\sum_x v(x) = 0 \), we have

\[
\|v(I - P)\| \geq \frac{\alpha}{m} \|v\|
\]

Step IV. Get bounds on the dual of a LP related to (*) \(\square \)
Extend to Geometrically Ergodic Chains?

→ In many applications, we are interested in *unbounded* functions F

→ Most chains found in applications (like MCMC) are *not Doeblin*, but geometrically ergodic

Defn A Markov chain $\{X_n\}$ is **geometrically ergodic** iff it converges to equilibrium exponentially fast, *not necessarily uniformly in the initial condition*

→ The most general class for which exponential bounds might hold

→ Same bounds *cannot* hold exactly as before

→ But: There *is* a different exponential bound in this case

→ The following example motivates its form . . .
A Hard Example for the Gibbs Sampler: The Witch’s Hat

Setting: Use (randomized) Gibbs sampler to compute average of $F(x, y) = e^{5x} + e^{5y}$ w.r.t. the “witch’s hat distr” with $\epsilon = \frac{1}{251}$
A Hard Example for the Gibbs Sampler: The Witch’s Hat

Setting: Use (randomized) Gibbs sampler to compute average of $F(x, y) = e^{5x} + e^{5y}$ w.r.t. the “witch’s hat distr” with $\epsilon = \frac{1}{251}$

Problem: Estimates very sensitive to the rare visits to the “brim”
A Hard Example for the Gibbs Sampler: The Witch’s Hat

Setting: Use (randomized) Gibbs sampler to compute average of $F(x, y) = e^{5x} + e^{5y}$ w.r.t. the “witch’s hat distr” with $\epsilon = \frac{1}{251}$

Problem: Estimates very sensitive to the rare visits to the “brim”

Idea: Consider the new function

$$U(x) = F(x) - E\left[F(X_2) | X_1 = x\right]$$

and note that $E_\pi(U) = 0$

[Cf. Henderson (1997)]
A Sampling Criterion for this Gibbs Sampler

Idea: Together with the averages of F also compute the averages of U
A Sampling Criterion for this Gibbs Sampler

Idea: Together with the averages of F also compute the averages of U

We know: $E_{\pi}(U) = 0$

Sampling Criterion:
Sample the F-averages **only** when the U-averages are between $\pm u$ for some small $u > 0$
More Simulation Results from the Witch’s Hat

Averages of F and sampling times (purple)

Averages of U and time spent at the peak (red)
More Simulation Results from the Witch’s Hat

Averages of F and sampling times (purple)

Averages of U and time spent at the peak (red)
Generally: Geometrically Ergodic Chains

Defn A Markov chain \(\{X_n\} \) is **geometrically ergodic** iff it converges to equilibrium exponentially fast, *not necessarily uniformly in the initial condition*.

Equivalent characterization There exists a function \(V : S \to \mathbb{R} \), a finite set \(S_0 \subset S \), and positive constants \(b, \delta \), such that:

\[
E[V(X_2) \mid X_1 = x] - V(x) \leq -\delta V(x) + b \mathbb{I}_{S_0}(x) \quad \text{for all } x
\]

Bounds
Suppose the function of interest \(F : S \to \mathbb{R} \) is possibly **unbounded**, but with \(\| F^2 \|_V := \sup_x \frac{F(x)^2}{V(x)} < \infty \)

Define a **screening function** \(U(x) = V(x) - E[V(X_2) \mid X_1 = x] \)
Theorem 3

For any geometrically ergodic chain \(\{X_n\} \), any function \(F : S \to \mathbb{R} \) as above, any \(\epsilon, u > 0 \), and any initial condition \(X_1 = x_1 \):

\[
\log \Pr \left\{ \frac{1}{n} \sum_{i=1}^{n} F(X_i) \geq E_\pi(F) + \epsilon \land \left| \frac{1}{n} \sum_{i=1}^{n} U(X_i) \right| \leq u \land X_n \in S_0 \right\}
\]
An Exponential Bound for Geometrically Ergodic Chains

Theorem 3

For any geometrically ergodic chain \(\{X_n\} \), any function \(F : S \rightarrow \mathbb{R} \) as above, any \(\epsilon, u > 0 \), and any initial condition \(X_1 = x_1 \):

\[
\log \Pr \left\{ \frac{1}{n} \sum_{i=1}^{n} F(X_i) \geq E\pi(F') + \epsilon \quad \& \quad \left| \frac{1}{n} \sum_{i=1}^{n} U(X_i) \right| \leq u \quad \& \quad X_n \in S_0 \right\}
\leq -(n - 1) \frac{1}{2} \left[\left(\frac{\delta}{8\xi \|F^2\| \nu} \right) \left(\frac{\epsilon - \frac{F_{\text{max},0}}{n-1}}{u + b + \frac{U_{\text{max},0}}{n-1}} \right)^2 - \frac{2}{n - 1} \right]^2
\]

where \(F_{\text{max},0} = \max_{x \in S_0} |F(x)| \), \(U_{\text{max},0} = \max_{x \in S_0} |U(x)| \) and \(\xi \) is the “convergence parameter” of the chain.
General Sampling Criterion for Geometrically Ergodic Chains

Note: Apart from the fact that the above bound is explicitly computable, it naturally leads us to formulate the following sampling criterion.

Given: A geometrically ergodic chain \(\{X_n\} \)
- Its parameters \(V, b, \delta, S_0 \)
- A function \(F \) s.t. \(F^2 \leq CV \)

Set: The screening function \(U(x) := V(x) - E[V(X_2)|X_1 = x] \)
- A “small” threshold \(u > 0 \)

Sampling Criterion: Sample the results of the chain only at times \(n \) when \(X_n \in S_0 \) and \(|\frac{1}{n} \sum_{i=1}^{n} U(X_i)| \leq u \)

Explanation: Control averages and excursions
Comments on the Sampling Criterion

~ Geometric ergodicity in general easy to verify

~ Many choices for \(V(x) \), and \(V \approx F \) often works

~ To apply the sampling criterion, the screening function

\[
U(x) = V(x) - E[V(X_2)|X_1 = x]
\]

needs to be analytically computable

~ Easily so for the Gibbs sampler,
 some versions of the Metropolis algorithm . . .
Comments on Theorem 3

Why is the exponent in Theorem 3 of $O(\epsilon^2)$ and not $O(\epsilon^4)$?

Proof outline similar to one for Doeblin case

Theorem 3 applies even to cases where

\[
\Pr\left\{\frac{1}{n}\sum_{i=1}^{n} F(X_i) \geq E_\pi(F) + \epsilon\right\}
\]

decays sub-exponentially (e.g., discrete $M/M/1$ queue)

How is it that the addition of two non-rare events

\[
\left\{\left|\frac{1}{n}\sum_{i=1}^{n} U(X_i)\right| \leq u\right\} \cap \left\{X_n \in S_0\right\}
\]

makes the probability exponentially small?!

Specialize to the i.i.d. case for an explanation . . .
An “i.i.d. version” of Theorem 3

Setting: Estimate $E_P(F)$ where F is “heavy tailed” from i.i.d. samples $X_1, X_2, \ldots \sim P$

Suppose we have a U with known $E_P(U) = 0$, s.t.

U “dominates” F: $\operatorname{ess\ sup}[F(X) - \beta U(X)] < \infty$, for all $\beta > 0$

Assume $E_P(F^2), E_P(U^2)$ both finite
An “i.i.d. version” of Theorem 3

Setting: Estimate $E_P(F)$ where F is “heavy tailed” from i.i.d. samples $X_1, X_2, \ldots \sim P$
Suppose we have a U with known $E_P(U) = 0$, s.t.
U “dominates” F: $\text{ess sup}[F(X) - \beta U(X)] < \infty$, for all $\beta > 0$
Assume $E_P(F^2), E_P(U^2)$ both finite

Theorem 4

(i) The “standard” error prob is subexponential: $\forall \epsilon > 0$:
$$\lim_{n \to \infty} -\frac{1}{n} \log \text{Pr} \left\{ \frac{1}{n} \sum_{i=1}^{n} F(X_i) \geq E_P(F) + \epsilon \right\} = 0$$
An “i.i.d. version” of Theorem 3

Setting: Estimate $E_P(F)$ where F is “heavy tailed” from i.i.d. samples $X_1, X_2, \ldots \sim P$

Suppose we have a U with known $E_P(U) = 0$, s.t.

U “dominates” F: $\text{ess sup}[F(X) - \beta U(X)] < \infty$, for all $\beta > 0$

Assume $E_P(F^2), E_P(U^2)$ both finite

Theorem 4

(i) The “standard” error prob is subexponential: $\forall \epsilon > 0$:

$$
\lim_{n \to \infty} -\frac{1}{n} \log Pr \left\{ \frac{1}{n} \sum_{i=1}^{n} F(X_i) \geq E_P(F) + \epsilon \right\} = 0
$$

(ii) The “screening” error prob is exponential: $\forall \epsilon, u > 0$:

$$
\lim_{n \to \infty} -\frac{1}{n} \log Pr \left\{ \frac{1}{n} \sum_{i=1}^{n} F(X_i) \geq E_P(F) + \epsilon \& \left| \frac{1}{n} \sum_{i=1}^{n} U(X_i) \right| \leq u \right\} > 0
$$
(i) $\Pr\{\text{standard error}\} \approx \exp\left\{-n \inf_{Q \in \Sigma} H(Q \| P)\right\}$

where $\Sigma = \{Q : E_Q(F) \geq E_P(F) + \epsilon\}$ and the infimum is $= 0$
Geometrical Explanation of Theorem 4

(i) \(\Pr\{\text{standard error}\} \approx \exp\left\{ -n \inf_{Q \in \Sigma} H(Q\|P) \right\} \)

where \(\Sigma = \{Q : E_Q(F) \geq E_P(F) + \epsilon\} \) and the infimum is \(= 0 \)

(ii) \(\Pr\{\text{screening error}\} \approx \exp\left\{ -n \inf_{Q \in E} H(Q\|P) \right\} = \exp\left\{ -n H(Q^*\|P) \right\} \)

where \(E = \{Q : E_Q(F) \geq E_P(F) + \epsilon, \ |E_Q(U)| < u\} \)

and the infimum is \(> 0 \)
(iii) The “screening” error prob satisfies:

Let $K > 0$ arbitrary. Then $\forall \epsilon > 0$, $0 < u \leq K\epsilon$

$$\log \Pr \left\{ \frac{1}{n} \sum_{i=1}^{n} F(X_i) \geq E_P(F) + \epsilon \quad \& \quad \left| \frac{1}{n} \sum_{i=1}^{n} U(X_i) \right| \leq u \right\}$$

$$\leq -\frac{n}{2} \left[\frac{M}{M^2 + (1 + \frac{1}{2K})^2} \right]^2 \epsilon^2$$

where $M = \text{ess sup} \left[F(X) - \frac{1}{2K} U(X) \right]$
Theorem 4: A Heavy-Tailed Simulation Example

\[\frac{1}{k} \sum_{i=1}^{k} X_i^{3/4} \]

Sampling times
Concluding Remarks

Information-Theoretic Methods
Convexity, elementary properties
Strikingly effective in a brutally technical area...

Markov Chain Bounds
Doeblin chains
Geometrically ergodic chains
Functional analysis and optimization
A new sampling criterion
Further applications in MCMC...
Simulating a Simple Queue in Discrete Time

Consider: The chain $X_{n+1} = [X_n - S_{n+1}]_+ + A_{n+1}$ where:

\begin{align*}
\{A_n\} \text{ i.i.d. } &\sim (1 + \kappa)\alpha \cdot \text{Bern}\left(\frac{1}{1+\kappa}\right) \quad \text{and} \quad \{S_n\} \text{ i.i.d. } \sim 2\mu \cdot \text{Bern}\left(\frac{1}{2}\right) \\
\text{the load } \rho = \frac{E(A_k)}{E(S_n)} = \frac{\alpha}{\mu} \text{ is heavy, } \rho \approx 1, \quad \text{and} \quad F(x) = x
\end{align*}
Simulating a Simple Queue in Discrete Time

Consider: The chain $X_{n+1} = [X_n - S_{n+1}]_+ + A_{n+1}$ where:

- $\{A_n\}$ i.i.d. $\sim (1 + \kappa)\alpha \cdot \text{Bern}(\frac{1}{1+\kappa})$ and $\{S_n\}$ i.i.d. $\sim 2\mu \cdot \text{Bern}(\frac{1}{2})$
- The load $\rho = \frac{\mathbb{E}(A_k)}{\mathbb{E}(S_n)} = \frac{\alpha}{\mu}$ is heavy, $\rho \approx 1$, and $F(x) = x$

Then: $\{X_n\}$ is geometrically ergodic with $V(x) = e^{\epsilon x}$

$U(x) = V(x) - E[V(X_2)|X_1 = x]$ is an easily computable quadratic

No exponential error bound can be proved on the error probability!
Simulating a Simple Queue in Discrete Time

Consider: The chain $X_{n+1} = [X_n - S_{n+1}]_+ + A_{n+1}$ where:

$\{A_n\}$ i.i.d. $\sim (1 + \kappa)\alpha \cdot \text{Bern}(\frac{1}{1+\kappa})$ and $\{S_n\}$ i.i.d. $\sim 2\mu \cdot \text{Bern}(\frac{1}{2})$

the load $\rho = \frac{E(A_k)}{E(S_n)} = \frac{\alpha}{\mu}$ is heavy, $\rho \approx 1$, and $F(x) = x$

Then: $\{X_n\}$ is geometrically ergodic with $V(x) = e^{\epsilon x}$

$U(x) = V(x) - E[V(X_2)|X_1 = x]$ is an easily computable quadratic

No exponential error bound can be proved on the error probability!