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Abstract

A key question in the design of engineered competitive systems has been that of the
efficiency loss of the associated equilibria. Yet, there is little known in this regard in the
context of stochastic dynamic games, particularly in a large population regime. In this pa-
per, we revisit a class of noncooperative games, arising from the synchronization of a large
collection of heterogeneous oscillators. In [31], we derived a PDE model for analyzing the
associated equilibria in large population regimes through a mean field approximation. Here,
we examine the efficiency of the associated mean-field equilibria with respect to a related
welfare optimization problem. We construct constrained variational problems both for the
noncooperative game and its centralized counterpart and derive the associated nonlinear
eigenvalue problems. A relationship between the solutions of these eigenvalue problems is
observed and allows for deriving an expression for efficiency loss. By applying bifurcation
analysis, a local bound on efficiency loss is derived under an assumption that oscillators
share the same frequency. Through numerical case studies, the analytical statements are
supported in the homogeneous frequency regime; analogous numerical results are provided
for the heterogeneous frequency regime.

1 Introduction

This paper concerns control synthesis and analysis for complex systems, described by a large
population of coupled heterogeneous nonlinear stochastic systems. A central goal is to estimate
the efficiency loss for large systems. Applications appear in many settings, such as economics,
neurobiology, and telecommunications [11, 10, 9, 25, 28, 23]. Except in the simplest cases, it is
impossible to obtain exact solutions to the dynamic programming equations to obtain optimal
control solutions. This barrier is well known, and is the motivation for a large literature on
approximation techniques for complex networked systems. The heavy-traffic theory developed
in queueing theory is an example of optimal control approximation in a dynamic setting [21].
Often in such settings, agents have conflicting objectives, which motivates game-theoretic
counterparts of such multi-agent systems. Expectedly, obtaining expressions for the equilibria
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arising from the resulting dynamic games is no less challenging. Yet, by employing a mean-
field approximation, control synthesis has proved possible in some regimes [9, 8, 29, 31]. More
recently, there have been efforts to examine risk-based [27] and robust [2] generalizations.

An immediate question is whether the equilibria associated with such mean-field approxi-
mations are indeed optimal (or near-optimal) solutions to the original problem of controlling a
large population of nonlinear stochastic systems. Such a claim is seen to hold if the equilibria
are efficient or that the equilibria lead to no loss in social welfare. The analysis of efficiency
loss in complex finite-player static games has been studied extensively in the computer science
and operations research community, with a focus on routing [23, 22, 18, 24, 13, 3, 4], resource
allocation [15, 14, 16, 2], power systems [19, 20, 6, 5], and markets [1]. It is not obvious how
these techniques can be directly extended to the dynamic and stochastic models considered
here.

The present paper concerns approximation techniques for both centralized optimal control
and dynamic games based upon the theory of mean-field games. The approximation techniques
are based on an asymptotic setting, in which the number of players tends to infinity, extending
the mean-field game theory of [9, 17, 29]. This approach is similar to the mean-field approx-
imation techniques that form one foundation of statistical mechanics [17]. In this setting,
the goal is to understand the aggregate behavior of a large number of interacting particles.
Under appropriate conditions, as the number of particles tends to infinity, the fluctuations
of the mass influence on an individual particle are “averaged out” [17, 9, 29]. Consequently,
this allows for any agent to make decisions based on its state and the mass influence, which
is typically shown to be deterministic. Together with a consistency requirement imposed by
the mass-influence, the resulting problem in an infinite population setting can be reduced to
a set of coupled PDEs. There has been relatively little effort applied towards the quantifica-
tion of efficiency loss in the mean-field regime. Huang et al. [9] provide an efficiency bound
derived from comparing the infinite horizon costs between the centralized control and their
decentralized mean-field counterparts in a setting with quadratic costs and linear dynamics.

The analysis in the present paper is focused on a particular model of coupled oscillators
introduced in [31, 33] where the synchronization of a collection of oscillators, a stochastic
control problem, is modeled as a dynamic game. In the infinite-population models considered in
this paper, the solutions of this centralized control problem and the equilibria of the associated
dynamic game correspond to the solutions to two sets of coupled PDEs. An analysis of the two
models in an infinite population regime leads to an expression for the efficiency loss associated
with the game. This exact analysis is possible in a special case in which the population is
homogeneous, in the sense that each oscillator shares a common natural frequency. Succinctly,
the main contributions of this paper pertain to the analysis of the efficiency of equilibria
associated with the stochastic dynamic games:

(i) The mean-field approximations for the centralized stochastic control problem and its
game-theoretic counterpart are both represented as stochastic variational problems, each
of which is represented as a nonlinear eigenvalue problem.

(ii) A precise relationship is established between the two variational problems, which leads to
a simple expression for efficiency loss. Furthermore, under a regime in which all oscillators
share the same frequency (homogeneous regime), locally valid bounds on efficiency loss
are obtained through bifurcation analysis.
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(iii) These theoretical results for the infinite-population model are supported through numer-
ical solutions in the homogeneous and heterogeneous regimes.

Before proceeding, the challenge in deriving efficiency statements imposes some limitations
on the generality of the results. Specifically, the analytical statements are restricted to a
class of solutions and the obtained efficiency bounds are in such a regime. The remainder
of the paper is organized as follows. Background regarding the oscillator model, and the
optimization problems considered in this paper appears in Sec. 2. The two variational problems
are introduced in Sec. 3, whose solutions characterize system behavior in the infinite population
limit. This paves the way for an efficiency analysis of the equilibria associated with the game-
theoretic problem in Sec. 4. Numerical results are presented in Sec. 5, and conclusions in
Sec. 6.

2 Preliminaries and problem statement

2.1 Oscillator game

The oscillator game model is comprised of a population of N oscillators. The model for the
ith oscillator is given by,

dθi(t) = (ωi + ui(t)) dt + σ dξi(t), mod 2π, (1)

where θi(t) ∈ [0, 2π] is the phase of the ith oscillator at time t, ωi is the natural frequency,
ui(t) is the control input, and {ξi(t), i = 1, . . . , N} are mutually independent standard Wiener
processes.

The control problem is a game: Specifically, the ith oscillator seeks to minimize its own
performance objective, given the decisions of (competing) oscillators:

η(POP)

i (ui;u−i) = lim
T→∞

1
T

∫ T

0
E[c(θi; θ−i) + 1

2Ru2
i ] ds, (2)

where θ−i = (θj)j 6=i, c(·) is a cost function, u−i = (uj)j 6=i and R is the control penalty
parameter. The form of the function c and the value of R are assumed to be common to the
entire population.

The N−player noncooperative game is denoted by GN . A Nash equilibrium is defined as a
tuple of control policies (ui)N

i=1 such that ui

minimizes η(POP)

i (ui;u−i), i = 1, . . . , N. (3)

Motivated in part by [8], we also consider a centralized welfare optimization problem,
denoted by WN . The objective here is to chose the control input vector u = (ui)N

i=1 to
minimize the welfare,

η(OPT)(u) ,
1
N

N∑
i=1

η(POP)

i (ui;u−i) = lim
T→∞

1
T

∫ T

0

1
N

N∑
i=1

[
c(θi; θ−i) + 1

2Ru2
i

]
ds. (4)
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One of the objectives of the present paper is to characterize the loss in efficiency in going
from the (centralized) welfare problem to the (distributed) game theoretic problem: Sup-
pose u is an equilibrium of GN , then it is said to be an efficient equilibrium if η(OPT)(u) =
N−1

∑N
i=1 η(POP)

i ; if not, then the loss in efficiency is defined as follows:

∆N
η ,

1
N

N∑
i=1

η(POP)

i − η(OPT)(u).

For analytical tractability, we will consider the infinite-N limit. Specifically, we will derive
certain formulae for loss of efficiency for G∞ with respect to W∞.

There are several functional analytic subtleties concerning the existence of a unique solution
in the appropriate function space. While the question of uniqueness is not a focus of this paper,
we assume that all minimization/infimization problems have a unique solution. The following
assumption is employed in the remainder of this paper:

Assumption 1. (i) For each i, {(θi(0), ωi)} is i.i.d., independent of {ξi}, with common
marginal distribution (θi(0), ωi) ∼ p(θ, 0;ω)g(ω).

The frequency ωi is a constant independent of time — It is assumed that at time t = 0, the N
scalars {ωi} are chosen independently according to a fixed uniform distribution with density
g(ω) = 1

2γ , which is supported on an interval of the form Ω = [1 − γ, 1 + γ] where γ < 1 is
assumed to be a small constant. For a homogeneous population γ = 0 and g(ω) = δ(ω− 1),
the Dirac delta function at ω = 1.

(ii) The cost function c is separable, as shown below

c(θi; θ−i) :=
1
N

∑
j 6=i

c•(θi − θj(t)), (5)

where c• is assumed to be a bounded function that satisfies the following properties:

(i) c• is spatially invariant, i.e., c•(ϑ, θ) = c•(ϑ− θ),

(ii) c• is 2π-periodic, i.e., c•(ϑ− θ) = c•(ϑ− θ + 2π),

(iii) c• is non-negative, i.e., c•(ϑ− θ) ≥ 0,

(iv) c• is an even function, i.e., c•(ϑ− θ) = c•(θ − ϑ).

In a numerical example, we take c•(θ − ϑ) = 1
2
sin2

(
θ−ϑ

2

)
.

(iii) We assume that there exist unique solutions to all infimization/minimization problems.

The considerations of this paper are based on an infinite-population limit similar to those
introduced in our prior work [31, 33] and by others (e.g., [26]): We construct a density function
p that is intended to approximate the probability density function for the individual oscillators.
For any i and any t > 0, the density p(θ, t; ωi) is intended to approximate the probability den-
sity of the random variable θi(t), evolving according to the stochastic differential equation (1).
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For a generic oscillator with frequency ω and control u, the density p is a 2π-periodic function
in θ-variable, that evolves according to the Fokker-Planck-Kolmogorov (FPK) equation:

∂tp + ∂θ ((ω + u)p) =
σ2

2
∂2

θθp , (6)

where ∂t and ∂θ denote the partial derivative with respect to t and θ, respectively, and ∂2
θθ

denotes the second derivative with respect to θ.
In this paper, a certain steady-state traveling wave solution will be of interest. For such

a solution, the following Lemma characterizes a useful relationship between control u and
density p. The proof appears in the Appendix.

Lemma 1. Suppose p is a 2π-periodic positive solution of the FPK equation (6), of the trav-
eling wave form:

p(θ, t;ω) = p(θ − at, 0;ω),

where a ∈ <. Then the control input u is related to the density p by,

u =
σ2

2
∂θ ln p +

(
1− 2π

p
∫ 2π
0

1
p dθ

)
(a− ω). (7)

Remark 1. The mean-field oscillator game model described here was introduced in [31, 33].
Although the original model in these papers is posed as a game, one could also consider the
welfare optimization problem as a starting point. Design of distributed control laws for such
problems is challenging. One avenue is to allow agents to compete in a distributed fashion,
and this in turn provides motivation for the game theoretic problem. The loss of efficiency may
be regarded as a measure of performance degradation in going from the welfare to the game
problem.

2.2 Mean-field approximation

The control for the game problem is based on a mean-field approximation in the infinite-N
limit. Specifically, the density p(θ, t;ω) is used to define,

c̄(θ, t) :=
∫

Ω

∫ 2π

0
c•(θ − ϑ)p(ϑ, t;ω)g(ω) dϑ dω. (8)

The law of large numbers suggests the approximation of c(θ; θ−i(t)) by c̄(θ, t), when N is large.
For the scalar model (1) with cost c̄(θ, t) depending only on θi = θ, the game reduces to

independent optimal control problems. The associated average-cost HJB equation is given by,

min
ui

{c̄(θ, t) + 1
2Ru2

i +Duihi (θ, t)} = η∗i , (9)

where hi denotes the relative value function of the ith agent, and Du denotes the controlled
generator, defined for C2 functions f via,

Duf = ∂tf + (ωi + u)∂θf +
σ2

2
∂2

θθf.
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Because the cost is quadratic in ui and the dynamics are linear in ui, this leads to the HJB
equation

∂thi + ω∂θhi =
1

2R
(∂θhi)2 − c̄(θ, t) + η∗i −

σ2

2
∂2

θθhi,

and the optimal control law

u∗i = − 1
R

∂θhi(θi, t). (10)

2.3 PDE model

The mean-field game model is given by a coupled set of partial differential equations (PDEs)
for the relative value function h(θ, t;ω) and the density p(θ, t;ω):

∂th + ω∂θh =
1

2R
(∂θh)2 − c̄(θ, t) + η∗ − σ2

2
∂2

θθh, (11a)

∂tp + ω∂θp =
1
R

∂θ [p(∂θh)] +
σ2

2
∂2

θθp, (11b)

c̄(θ, t) =
∫

Ω

∫ 2π

0
c•(θ − ϑ)p(ϑ, t;ω)g(ω) dϑ dω. (11c)

The PDE require initial and boundary condition, e.g., (p, h, c̄) are assumed to be 2π-periodic
in θ-variable; cf., [33]. The coupled PDE model is referred to as the MF-HJB equation.

2.4 ε-Nash equilibrium

Suppose {p(θ, t;ω), h(θ, t, ω)} is a time-independent or time-periodic smooth solution of (11a)-
(11c). For a finite population, each oscillator is controlled using the control solution in (10),

uo
i = − 1

R
∂θh(θi(t), t;ω)

∣∣∣∣
ω=ωi

.

Thm. 3.3 in [33], repeated below, shows that this control law is an ε-Nash equilibrium for (2).

Theorem 1. For large N , the oblivious control {uo
i } is an ε-Nash equilibrium for (2): For

any admissible control ui,

η(POP)

i (uo
i ;u

o
−i) ≤ η(POP)

i (ui;uo
−i) + εN ,

where εN → 0 as N →∞ a.s., and in mean square with rate N−1.

2.5 Special solutions

An ε-Nash equilibrium of the game (1) - (5) is obtained by considering the solution of the
PDEs (11a) - (11c). Two types of solution are described in [33]:
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(i) Incoherence solution:

p(θ, t;ω) =
1
2π

, h(θ, t;ω) = 0 ,

with associated control law u(t) ≡ 0.

(ii) Synchrony solution: The traveling wave equation,

p(θ, t;ω) = p(θ − t, 0;ω), h(θ, t;ω) = h(θ − t, 0;ω),

where the population moves with a constant wave speed, 1, along the circle [0, 2π]. The
distribution p is uni-modal and positive.

In this paper, with a slight abuse of notation, p(θ;ω) is used to denote p(θ, 0;ω), and
similarly h(θ;ω) := h(θ, 0;ω). Note that the traveling wave solution is obtained simply by
rotating this solution with a constant wave speed, i.e., p(θ, t;ω) = p(θ− at;ω) and h(θ, t;ω) =
h(θ − at;ω).

3 Variational problems

Bounding the efficiency loss in the mean-field regime is generally difficult since it necessitates
obtaining an expression for the mean-field equilibrium and subsequently deriving bounds using
the associated welfare problem. Instead, we show in Section 3.2, that the solution of a single
optimization problem provides us with precisely the mean-field equilibrium of interest. In Sec-
tion 3.3, we formulate a variant of this problem whose solution is shown to solve the centralized
welfare problem. Together, these two variational problems provide the basis for conducting
the efficiency analysis. Notably, the choice of these problems is by no means arbitrary and
is closely tied to the Euler-Lagrange conditions associated with the game-theoretic and opti-
mization problems, respectively. We begin by introducing the notations and assumptions for
the mean-field limit.

3.1 A stationary mean-field model

It is assumed that for each N and i, the system (1) is controlled using a (possibly time varying)
Markov policy. That is, ui(t) is a function of {θj(t) : 1 ≤ j ≤ N}, N , i, and t. To characterize
the set of possible equilibria for the limiting model is beyond the scope of this work. Instead,
we restrict attention to either time-independent or periodic solutions for the infinite-N limit.
The motivation comes from the incoherence and the synchrony solutions described in Sec. 2.5.

The following assumption will be in place throughout this section.

Assumption 2. (i) A mean-field density p is obtained in the infinite-N limit: For any
bounded measurable function χ : [0, 2π] × Ω → <, and each t ≥ 0, the following limit ex-
ists a.s.,

lim
N→∞

1
N

N∑
j=1

χ(θj(t), ωj) =
1
2γ

∫ 1+γ

ω=1−γ

∫
ϑ∈[0,2π]

χ(ϑ, ω)p(ϑ, t;ω)g(ω) dϑ dω .
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(ii) The density p(θ, t;ω) is positive and either time-independent or periodic in t. The periodic
solution can be expressed as a traveling wave with wave speed a. As before, p(θ;ω) is used
to denote p(θ, 0;ω).

Observe that Assumption 2 (ii) presumes that any time-dependent mean-field limit is in a
traveling wave steady-state. This is imposed because synchrony solution is a traveling wave
solution with wave-speed a = 1. Under this assumption, the mean-field cost

c̄(θ, t) :=
∫

Ω

∫ 2π

0
c•(θ − ϑ)p(ϑ− at;ω)g(ω) dϑ dω. (12)

is periodic, and we can expect periodic solutions to the MF-HJB equation. In fact, c̄(θ, t) =
c̄(θ − at, 0), and is simply denoted as c̄(θ − at).

Also, under these assumptions, the ergodic steady-state distribution of a generic oscillator,
{θ(t)} with frequency ω, exists and moreover,

lim
T→∞

1
T

∫ T

0
lim

N→∞

1
N

N∑
j=1

c•(θ(t)− θj(t)) dt = lim
T→∞

1
T

∫ T

0
c̄(θ(t)− at) dt =

∫ 2π

0
p(θ;ω)c̄(θ) dθ.

3.2 Variational formulation of G∞
Let X := C2

2π([0, 2π], R+) denote the space of twice continuously differentiable nonnegative
real-valued periodic functions on [0, 2π]. We consider the following variational problem:

min
v∈X

ηg(v; c̄, ω, a) : =
∫ 2π

0

[
c̄(θ)v2 +

Rσ4

2
(∂θv)2

+
R

2
(ω − a)2v2

(
1− 2π

v2
∫ 2π
0 v−2 dθ

)2 ]
dθ, (13)

s.t. 1 =
∫ 2π

0
v2(θ;ω) dθ. (14)

The necessary conditions of optimality of this problem are captured by the Euler-Lagrange
conditions, stated below and proved in the Appendix 7.2.

Lemma 2. Suppose v is a critical point of (13)-(14) given the parameters ω, a, and the
function c̄(θ). Then, there exists a λ such that (v, λ) is a solution of

∂2
θθv +

2
Rσ4

(λ− c̄)v − (ω − a)2

σ4

1−

(
2π

v2
∫ 2π
0 v−2 dθ

)2
 v = 0, (15)

∫ 2π

0
v2(θ;ω) dθ = 1, (16)

where λ is the Lagrange multiplier associated with the constraint (14).
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Our interest lies in the constrained variational problem; specifically, we are interested in
critical points to (13)-(14) satisfying the additional requirement

c̄(θ) =
∫

Ω

∫ 2π

0
c•(θ − ϑ)v2(ϑ;ω)g(ω) dϑ dω =: C[v](θ). (17)

We denote this constrained variational problem as VG∞.
From Lemma 2, we obtain the necessary conditions of optimality. The Lagrange multiplier

is seen to give the optimal value of the variational problem. In the following, V denotes the
subspace of functions v(∈ X) that satisfies the density constraint (14).

Lemma 3. For any given value of parameters ω and a, suppose (c̄∗, v∗) is a solution of
VG∞, corresponding to (13)-(14), (17), and λ∗ is the corresponding Lagrange multiplier. Then
(c̄∗, v∗, λ∗) is a solution of the problem (15)-(17) and λ∗(ω, a) = η∗g(ω, a) := ηg(v∗; c̄∗, ω, a) =
minv∈V ηg(v; c̄∗, ω, a).

Next, we derive the main result of this subsection: a MFE of G∞ is a minimizer of VG∞.
The nonnegativity of the density p allows for constructing a v such that (v)2 = p.

Theorem 2. Suppose (h∗, (v∗)2, η∗) is a MFE of the dynamic game G∞, and c̄∗ is the mass-
influence function given by (11c). Under Assumption 2, (c̄∗, v∗) is a minimizer of V G

∞.

Proof. We begin by recalling the optimization problem for the ith-oscillator: (18), given by

η(POP)

i (ui;u−i) = lim
T→∞

1
T

∫ T

0
[c(θi; θ−i) + 1

2Ru2
i ] ds. (18)

We drop the subscript i, denoting θi(t) by θ(t) and frequency ωi as ω.
The mean-field approximation together with the traveling wave assumption (see Assump-

tion 2) are the key to simplify the two terms in the integrand:

(i) In the infinite-N limit, c(θ; θ−i(t)) is approximated by c̄(θ, t) (see (12)). Using Assump-
tion 2, the approximation is expressed as c̄(θ − at).

(ii) From Lemma 1, the relationship between the control u and the density p is captured

by (7); specifically, u = σ2

2 ∂θ ln p +
(

1− 2π

p
R 2π
0

1
p

dθ

)
(a− ω).

Substituting this in (18), we obtain the approximation of η(POP)

i as

η(p; c̄, ω, a) = lim
T→∞

1
T

∫ T

0

[
c̄(θ(s)− as) +

Rσ4

8
(∂θ ln p)2(θ(s)− as;ω)

]
ds︸ ︷︷ ︸

=:I1

+ lim
T→∞

1
T

∫ T

0

[
R

2
(ω − a)2

(
1− 2π

p
∫ 2π
0 p−1 dθ

)2 ]
ds︸ ︷︷ ︸

=:I2

+ lim
T→∞

1
T

∫ T

0

[
Rσ2

2
(a− ω)(∂θ ln p)

(
1− 2π

p
∫ 2π
0 p−1 dθ

)]
ds.︸ ︷︷ ︸

=:I3

(19)
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Next, Assumption 2 gives,

I1 =
∫ 2π

0
p(θ;ω) ·

[
c̄(θ) +

Rσ4

8
(∂θ ln p)2(θ;ω)

]
dθ,

I2 =
∫ 2π

0
p(θ;ω) ·

R

2
(ω − a)2

(
1− 2π

p
∫ 2π
0 p−1 dθ

)2
 dθ,

I3 =
∫ 2π

0
p(θ;ω) ·

[
Rσ2

2
(a− ω)(∂θ ln p)

(
1− 2π

p
∫ 2π
0 p−1 dθ

)]
dθ,

=
∫ 2π

0

Rσ2

2
(a− ω)∂θp dθ −

∫ 2π

0

Rσ2

2
(a− ω)

2π∫ 2π
0 p−1 dθ

(∂θ ln p) dθ = 0.

Substituting I1, I2 and I3 back in (19), we obtain the following expression for η:

η(p; c̄, ω, a) =
∫ 2π

0
p

c̄ +
Rσ4

8
(∂θ ln p)2 +

R

2
(ω − a)2

(
1− 2π

p
∫ 2π
0 p−1 dθ

)2
 dθ. (20)

Through a substitution of the form v2(θ;ω) = p(θ;ω), we arrive at an expression for ηg(v; c̄, ω, a)
in (13). Since p = v2 and p is a density function, we obtain the constraint (14). Finally, the
constraint (17) is the consistency requirement of the mean field approximation.

Next we clarify the relationship between a solution of VG∞ and a MFE of G∞ and demon-
strate how one may be constructed from the other. In [31], we have shown that the mean
field PDE model (11a)-(11c) is also an infinite-population limit model of the game-theoretic
problem. This suggests that there could be a certain relationship between the variational
formulation and the PDEs. The following Proposition formalizes this relationship and shows
that a solution to (15)-(17) solves the nonlinear eigenvalue problem of the PDEs (11a)-(11c).
In fact, one may proceed in the reverse direction and derive a MFE of G∞, given a solution of
VG∞.

Proposition 1. The following hold:

(i) Suppose (h, p, η∗), a MFE of G∞, be a traveling wave solution of the PDEs (11a)-(11c)
with wave-speed a. Let v =

√
p. Then (v, η∗) is the solution of the nonlinear eigenvalue

problem (15)-(17).

(ii) Conversely, suppose (v, η∗) is a solution of the nonlinear eigenvalue problem (15)-(17).
Let p(θ, t;ω) = v2(θ − at;ω), and suppose h(θ, t;ω) = h(θ − at, 0;ω) satisfies

∂θh = −Rσ2

2
∂θ ln p−R(a− ω)

(
1− 2π

p
∫ 2π
0 p−1 dθ

)
, (21)

where a is traveling wave speed. Then (h, p, η∗) is the MFE of G∞.

In summary, solutions of G∞ can be obtained by considering one of two problems:

1. The variational problem (13)-(14) with constraint (17);

2. The nonlinear eigenvalue problem (15)-(17).
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3.3 Variational formulation of W∞

As with the game-theoretic problem, we now introduce a variational problem, VW∞ , that serves
as counterpart of the welfare optimization problem W∞, associated with (4). This problem
requires a v ∈ X that minimizes

min
v∈X

ηw(v; a) :=
∫

Ω

∫ 2π

0

[
C[v]v2 +

Rσ4

2
(∂θv)2

+
R

2
(ω − a)2v2

(
1− 2π

v2
∫ 2π
0 v−2 dθ

)2 ]
dθg(ω) dω (22)

s.t. 1 =
∫ 2π

0
v2(θ;ω) dθ, (23)

where C[v] is defined as in (17). If we denote the average cost obtained through this avenue as
η∗w(a) i.e., η∗w(a) := minv∈X ηw(v; a), then the Euler-Lagrange conditions may be derived by
the next Lemma. Note that this Lemma combines Lemma 2 and Lemma 3 from the previous
section.

Lemma 4. Suppose v∗(θ;ω) is a solution of (VW∞), given by (22)-(23). Then (v∗(θ;ω), λ∗(ω, a))
satisfy the following:

∂2
θθv +

2
σ4R

(λ− 2C[v])v − (ω − a)2

σ4

1−

(
2π

v2
∫ 2π
0 v−2 dθ

)2
 v = 0, (24)

∫ 2π

0
v2(θ;ω) dθ − 1 = 0, (25)

where λ is the Lagrange multiplier associated with (23). Furthermore,

η∗w(a) =
∫

Ω

(
λ∗(ω, a)−

∫ 2π

0
C[v∗](θ)(v∗)2(θ;ω) dθ

)
g(ω) dω. (26)

In what follows, we present the main result of this subsection. Here, we show that a mean-
field optimum of W∞ is indeed a minimizer of the variational problem V W

∞ , a result that is
analogous to Theorem 2.

Theorem 3. Consider an Mean-Field Optimum (MFO) of W∞. Under Assumption 2, any
MFO of W∞ is a minimizer of the variational problem VW∞ given by (22)-(23).

Proof. We begin by recalling the welfare optimization problem

η(OPT)(u) = lim
T→∞

1
T

∫ T

0

1
N

N∑
i=1

[
c(θi; θ−i) + 1

2Ru2
i

]
ds. (27)

The mean-field approximation together with the traveling wave assumption (see Assumption 2)
are used to simplify the two terms in the integrand.
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(i) In the infinite-N limit,

1
N

N∑
i=1

c(θi; θ−i) ≈
∫

Ω

∫ 2π

0
p(θ − as;ω′)

∫
Ω

∫ 2π

0
c•(θ − ϑ)p(ϑ− as;ω)g(ω) dϑ dωg(ω′) dθ dω′

(ii) Likewise, using Lemma 1,

u =
σ2

2
∂θ ln p +

(
1− 2π

p
∫ 2π
0

1
p dθ

)
(a− ω).

Substituting these in (27),we obtain the approximation of η(OPT)(u) as

ηw(p; a) = lim
T→∞

1
T

∫ T

0

(∫
Ω

∫ 2π

0
p(θ − as;ω′)

∫
Ω

∫ 2π

0
c•(θ − ϑ)p(ϑ− as;ω)g(ω) dϑ dω

g(ω′) dθ dω′
)

ds

+ lim
T→∞

1
T

∫ T

0

∫
Ω

∫ 2π

0
p(θ − as;ω)1

2Ru2g(ω) dω dθ ds

=: I1 + I2. (28)

This is simplified as follows:

I1 =
∫

Ω

∫ 2π

0
p(θ;ω′)

∫
Ω

∫ 2π

0
c•(θ − ϑ)p(ϑ;ω) dϑg(ω) dω dθg(ω′) dω′

=
∫

Ω

∫ 2π

0
v2(θ;ω′)C[v](θ) dθg(ω′) dω′, (29)

where the equation is obtained from change of variable (θ − as to θ) and last equality is
obtained from p = v2 and the definition of C[v].

I2 = lim
T→∞

1
T

∫ T

0

∫
Ω

∫ 2π

0
p(θ − as;ω)1

2Ru2g(ω) dω dθ ds

= lim
T→∞

1
T

∫ T

0

∫
Ω

∫ 2π

0
p(θ;ω)1

2R

(
σ2

2
∂θ ln p +

(
1− 2π

p
∫

p−1

)
(a− ω)

)2

g(ω) dθ dω ds

=
∫

Ω

∫ 2π

0
p(θ;ω)1

2R

(
σ2

2
∂θ ln p +

(
1− 2π

p
∫

p−1

)
(a− ω)

)2

g(ω) dθ dω

=
∫

Ω

∫ 2π

0

[
Rσ4

8
(∂θp)2

p
+

Rp

2
(ω − a)2

(
1− 2π

p
∫

p−1

)2

+
Rσ2

2
(a− ω)

(
∂θp−

2π∫
p−1

∂θ ln p

)]
g(ω) dθ dω

=: I21 + I22 + I23
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The 2π-periodic property of p gives I23 = 0. Letting p = v2, we have

I2 = I21 + I22

=
∫

Ω

∫ 2π

0

[
Rσ4

2
(∂θv)2 +

R

2
v2(ω − a)2

(
1− 2π

v2
∫

v−2

)2
]

g(ω) dθ dω. (30)

Substituting (29) and (30) into (28), we arrive at the expression for ηw(v; a) in (22). Since p =
v2 and p is a density function, we obtain the constraint (23). The required result follows.

In summary, solutions of W∞ can be obtained by considering the variational problem
(VW∞) given by (22)-(23). Note that the nonlinear eigenvalue problem (24)-(25) represents
the necessary conditions for solutions of W∞ and currently a stronger result, as captured by
Prop. 1 in the context of mean-field equilibria, is unavailable. As a consequence, we now have
access to MFE of G∞ and MFO of W∞ through the solution of suitably defined variational
problems, denoted by VG∞ and VW∞ respectively.

4 Efficiency loss

This section focuses on the analysis of efficiency loss. The efficiency loss characterization is
carried out with respect to the solutions of the Euler-Lagrange BVP, (15)-(17) for the game
and (24)-(25) for the welfare problem.

In Section 4.1, we provide a relationship between a MFE and an MFO which allows for
constructing an expression for the efficiency loss. Then, in Section 4.2, we utilize bifurcation
analysis to derive bounds using the aforementioned expression for the efficiency loss.

There are several insights that one can draw from the expression for ∆η(R), particularly
from the numerical study. We observe that as R → 0, we have that η∗w and η∗g both tend to
zero. In effect, the efficiency loss tends to zero, as R → 0. Furthermore, when R is beyond a
threshold, we again observe that the efficiency loss is zero. In fact, the efficiency loss is seen
to be positive between these two regimes. In the following, through a bifurcation analysis, we
provide a locally valid upper bound on efficiency loss (Lemma 2) for homogeneous case, i.e.,
γ = 0 and thus ωi = 1 for all i = 1, . . . , N . Then we provide the numerical results in the next
section.

4.1 Relating the MFO and MFE

In this subsection, we examine the efficiency loss associated with using a MFE. This loss is
denoted by ∆η(R;σ, a) which is defined as follows:

∆η(R;σ, a) , Eω

[
η∗g(R;σ, ω, a)

]
− η∗w(R;σ, a), (31)

where Eω[·] :=
∫
Ω ·g(ω) dω. We provide two sets of results in this subsection. First, we

provide a precise relationship between a MFE and an MFO, in terms of v and λ. Second,
using these relationships, we construct an expression for ∆η(R).
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Theorem 4. Let σ and wave speed a be fixed. For a given value of R, let (c̄∗, v∗g(R)) be the
solution of VG∞ and λ∗g(R) be the corresponding Lagrange multiplier. Suppose v∗w(R) denotes the
solution to the welfare variational problem VW∞ and λ∗w(R) denotes the corresponding Lagrange
multiplier. Then we have the following:

(i) v∗w(R) = v∗g(R/2), λ∗w(R) = 2λ∗g(R/2),

(ii) ∆η(R) = Eω

[
λ∗g(R)− 2λ∗g(

R
2 ) +

∫ 2π
0

∫ 2π
0 c•(θ − ϑ)(v∗g)

2(ϑ; R
2 ) dϑ(v∗g)

2(θ; R
2 ) dθ

]
.

Proof. (i) Denote the equation (15) as Gg(v, λ, ω, R) = 0 and the equation (24) as Gw(v, λ, ω, R) =
0. Consider the problem Gw(vw, λw, ω,Rw) = 0. Suppose Rw = 2R and λw = 2λ. Then
we obtain the relationship

Gw(vw, λw, ω,Rw) = ∂2
θθv

w +
2

σ42R
(2λ− 2C[vw](θ))vw

= ∂2
θθv

w +
2

σ4R
(λ− C(vw)(θ))vw

= Gg(vw, λ, ω,R) = Gg(vw, λw/2, ω,Rw/2).

That is to say, to solve the problem Gw(vw, λw, R) = 0, we could instead solve the
equivalent problem Gg(vg, λg, R/2) = 0. Then vw(R) = vg(R/2) and λw(R) = 2λg(R/2).

(ii) An expression for ∆η may be obtained from its definition (31) using the relationship in
(i) and Eqn. (26).

We are now in a position to examine the loss of welfare associated with a MFE and this
represents the focus of the following.

4.2 Local bound through bifurcation analysis

In this section, we investigate the solutions of the nonlinear eigenvalue problems (15)-(17) and
(24)-(25) by using bifurcation analysis and conclude with a local bound on the efficiency loss.
Details on bifurcation theory may be found in the monography by Iooss and Joseph [12] and
an expansive description of bifurcation analysis in the context of mean-field oscillator games is
provided in [32]. We only consider the homogeneous case, i.e., a = ωi = 1 for all i = 1, . . . , N .

We denote Y := C0
2π([0, 2π], R), the space of continuous real-valued periodic functions on

[0, 2π]. Recall X := C2
2π([0, 2π], R+). The eigenvalue problem (Denoted as (EPα)) comprises

of a nonlinear operator Gα : X× R+ × R+ → Y, and a constraint B : X → R:

Gα(v, λ, R) := ∂2
θθv +

2
σ4R

(λ− αC(v)) v = 0, (32)

B(v) :=
∫

v2(θ) dθ − 1 = 0, (33)

where C(v) is defined in (17) and α = 1, 2. Note that α = 1 refers to the nonlinear eigenvalue
problem associated with the game-theoretic problem, as specified by (15)-(17), while α = 2
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refers to the corresponding problem arising from the welfare problem, as given by (24)-(25).
Given a fixed R ∈ R+, we are interested in obtaining solutions (v, λ) ∈ X × R+ that satisfy
Gα(v, λ, R) = 0 and B(v) = 0, for α = 1, 2.

In the context of the nonlinear eigenvalue problem, we define the incoherence solution

v = v0 :=
1√
2π

,

λ = λ0 := αC•
0 =

α

2π

∫ 2π

0
c•(θ) dθ.

About the incoherence solution, the linearization of (32) is given by

LRṽ(θ) := ∂2
θθṽ −

2α

σ4Rπ

∫ 2π

0
c•(θ − ϑ)ṽ(ϑ) dϑ

with ṽ ∈ X and satisfies the integral constraint
∫ 2π
0 ṽ(θ) dθ = 0.

The spectrum of the linear operator LR : X → Y is summarized in the following:

Theorem 5. Consider the linear eigenvalue problem LRv = sv. Suppose the Fourier expansion
of the function c• is

c•(θ) =
∞∑

k=−∞
C•

keikθ. (34)

Then the spectrum consists of eigenvalues s = −k2 − 4α
σ4R

C•
k =: sk for k = 0, 1, 2, . . . The

eigenspace for the kth eigenvalue s = sk is given by span{cos(kθ), sin(kθ)}.

As the parameter R varies, the potential bifurcation points are where an eigenvalue crosses
zero. The kth such bifurcation point is given by

R = Rk := − 4α

k2σ4
C•

k .

Example 1. Consider now the function c•(θ − ϑ) = 1
2 sin2

(
ϑ−θ

2

)
. In this case, C•

1 = −1
8 and

the first bifurcation point, defined as

R =
α

2σ4
=: Rα

c , (35)

is the critical point at which the incoherence solution loses stability.

A Lyapunov-Schmidt perturbation method is used to obtain a (formal) asymptotic formula
for the non-constant bifurcating solution branch. We substitute the expansion

R = r0 + xr1 + x2r2 + . . .

v = v0 + xv1 + x2v2 + . . .

λ = λ0 + xλ1 + x2λ2 + . . .

(36)

into (32)-(33), and collect the terms according to different orders of x. The results are sum-
marized in the following lemma with the calculations provided in the Appendix 7.6.
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Lemma 5. Given the function c•(ϑ− θ) = 1
2 sin2

(
ϑ−θ

2

)
, the synchrony solution for (32)-(33)

is given by an asymptotic formula in the small “amplitude” parameter x when R < r0:

v(x) =v0 + 2x cos(θ + θ0) +
(
− 1

v0
+ v0π cos 2(θ + θ0)

)
x2 + O(x3),

λ =λ̂(x) = λ0 − απx2 + O(x3),

R =R̂(x) = r0 −
7απ

2σ4
x2 + O(x3),

(37)

where r0 = Rα
c = α

2σ4 , λ0 = α
4 for α = 1, 2 and θ0 is an arbitrary phase in [0, 2π].

Using the asymptotic formula from lemma 5 and the formula of ∆η(R) in Thm. 4, we
obtain an upper bound for the efficiency loss around the critical value of R1

c and is provided
in the following.

Proposition 2. In a sufficiently small neighborhood of R = R1
c = 1

2σ4 , the following bound
holds for ∆η:

∆η(R) ≤ 6
49

(1− σ4R)2 + O(x3(1, R/2)), (38)

where x(α, R) =
√

2σ4

7απ (Rα
c −R) and Rα

c is defined as (35).

Proof. We prove the results using the approximation (37) and Thm. 4 (ii). Denote the third
term of ∆η(R) in Thm. 4 (ii) as ∆p

η. Then we have

∆η(R) = λ∗g(R)− 2λ∗g(
R

2
) + ∆p

η,

where ∆p
η =

∫ ∫
c•(θ− ϑ)[v∗g(ϑ; R

2 )]2 dϑ[v∗g(θ;
R
2 )]2 dθ. The bound is provided around the point

R1
c . So we consider the two situations: 1) R ≤ R1

c ; 2) R1
c < R(≤ R2

c).
First, we consider R ≤ R1

c . We have from (37)3

x2(α, R) =
2σ4

7απ
(Rα

c −R) ∀R ≤ Rα
c . (39)

Substitute x2 into (37)2, we obtain

λ∗g(R) = λα
0 − απ × 2σ4

7απ
(Rα

c −R) + O(x3)
∣∣∣
α=1

=
1
4
− 2σ4

7
(R1

c −R) + O(x3), (40)

and

∆η(R) = ∆p
η +

(
1
4
− 2σ4

7
(R1

c −R)
)
− 2

(
1
4
− 2σ4

7
(R1

c −
R

2
)
)

+ O(max{x3(1, R), x3(1, R/2})

= ∆p
η +

1
7
− 1

4
+ O(x3(1, R/2)). (41)
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We estimate ∆p
η using the approximation of v in (37)1.(

v∗g(θ;R)
)2 = v2

0 + 4x2 cos2(θ + θ0) + 4v0x cos(θ + θ0) + 2v0

(
− 1

v0
+ v0π cos 2(θ + θ0)

)
x2

+ 4 cos(θ + θ0)
(
− 1

v0
+ v0π cos 2(θ + θ0)

)
x3 + O(x3)

∣∣∣
x=x(1,R)

= v2
0 + x4v0 cos(θ + θ0) + x23 cos 2(θ + θ0) + x3

(
2v0π −

4
v0

)
cos(θ + θ0)

+ O(x3)
∣∣∣
x=x(1,R)

. (42)

Substituting c•(θ − ϑ) = 1
2
sin2

(
θ−ϑ

2

)
and (42) into ∆p

η, we obtain

∆p
η =

1
4

(
1−

∫ 2π

0

∫ 2π

0
cos(θ − ϑ)

(
v∗g(ϑ;R/2)

)2 dϑ
(
v∗g(θ;R/2)

)2 dθ

)
=

1
4
− 1

4

(∫ 2π

0
cos(θ + θ0)

(
v∗g(ϑ;R/2)

)2 dθ

)2

=
1
4
− 1

4

(
4πv0x− 3π

√
2πx3

)2
+ O(x6)

∣∣∣
x=x(1,R/2)

≤ 1
4
− 2πx2 + 6π2x4 + O(x6)

∣∣∣
x=x(1,R/2)

=
1
4
− 2

7
(1− σ4R) +

6
49

(1− σ4R)2 + O(x6(1, R/2)) by (39), (43)

and together with (41), we have

∆η(R) ≤ 1
7
− 2

7
(1− σ4R) +

6
49

(1− σ4R)2 + O(max{x6(1, R/2), x3(1, R/2)})

≤ 6
49

(1− σ4R)2 + O(x3(1, R/2)), since R ≤ R1
c . (44)

Next, we consider R > R1
c . In this case, the game is in incoherence. So λ∗g(R) ≡ 1

4 . Since
R ≤ R2

c , we have λ∗g(R/2) same as in (40) and ∆p
η same as in (43). Therefore, we get

∆η(R) =
1
4
− 2

(
1
4
− 2σ4

7
(R1

c −
R

2
)
)

+ ∆p
η + O(x3(1, R/2))

= −1
4

+
2
7
(1− σ4R) + ∆p

η + O(x3(1, R/2))

≤ 6
49

(1− σ4R)2 + O(x3(1, R/2)). (45)

The result (38) is proved by combining (44) and (45).

5 Numerics

In this section we present the numerical results of the nonlinear eigenvalue problem. For
the homogeneous case, we also compare the solution obtained using the perturbation method
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Figure 1: (Left) Bifurcation diagram for the Lagrange multiplier λ as a function of parameter
1/
√

R; First row for (EP1) of (VG∞) and second row for (EP2) of (VW∞). For (EP1), λ also
equals the average cost η∗g . (Right) The solution v2(θ); R = 10 (R−1/2 = 0.31) for (EP1) and
R = 22.8 (R−1/2 = 0.21) for (EP2).
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against a numerical solution. The numerical solution of the eigenvalue problem is obtained by
using a numerical continuation software AUTO [7]. For the heterogeneous case, the numerical
results are presented.

5.1 Homogeneous case

We first consider the homogeneous nonlinear eigenvalue problem (32)-(33) for c•(θ − ϑ) =
1
2
sin2

(
θ−ϑ

2

)
. We set the noise level at σ2 = 0.1. The results of the solutions p and the average

cost η∗ from Lyapunov-Schmidt perturbation method as well as those from the AUTO software
are depicted for comparison.

Relationship of p and λ with R Figure 1 depicts the bifurcation diagram for the Lagrange
multiplier λ as a function of the bifurcation parameter R as well as the function of p for a
particular value of R (R = 10 for (EP1) and R = 22.8 for (EP2)). For comparison, we
also depict the numerical solution that is obtained by using AUTO [7]. The first row in the
figure depicts the results for (EP1) and the second row depicts the results for (EP2). These
comparisons also serve to verify the perturbation results of Sec. 4.2.

Relationship of η with R Next, we compare the average cost (η∗g for (EP1) and η∗w for
(EP2)) obtained from solving the two nonlinear eigenvalue problems using AUTO. For (EP1),
we know η∗g = λ from lemma 3. For (EP2), we know η∗w from lemma 4. The results are depicted
in Fig. 2 (Left). There are two critical points in the figure: One is R1

c for (EP1) and the other
is R2

c for (EP2). When R > R2
c (R−1/2 < (R2

c)
−1/2), we obtain the incoherence solution for

both problems. When R < R1
c (R−1/2 > (R1

c)
−1/2), we obtain the synchrony solution for

both problems. The figure shows η∗g ≥ η∗w. The equality holds when both are in incoherence
solution, i.e., R > R2

c .

Relationship of ∆η with R We calculate the difference of the average cost (efficiency
loss) ∆η for the case of R < R1

c . The difference is calculated by two methods. One is the
method stated in Thm. 4 (ii) and the other is the definition. The results are depicted in Fig. 2
(Right). It shows that the formula for ∆η(R) in Thm. 4 is quite accurate, and the solution of
(VG∞) is always inefficient except in the incoherent regime. From the numerics, we obtain that
∆η/η∗w < 20%, while we get ∆η ≤ 0.03 from (38), which gives ∆η/η∗w < 15%.

5.2 Heterogeneous case

In this section, we depict the numerical results for the heterogeneous nonlinear eigenvalue
problem:

Gα(v, λ, R, ω, a) := ∂2
θθv +

2
σ4R

(λ− αC(v)) v

− (ω − a)2

σ4

1−

(
2π

v2
∫ 2π
0 v−2 dθ

)2
 v = 0, (46)

B(v) :=
∫

v2(θ) dθ − 1 = 0, (47)
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Figure 2: (Left) The bifurcation diagram in terms of the average cost η∗ for two eigenvalue
problems (EPα). The results are for σ2 = 0.1. The critical value of R for (EP1) of the game
problem is R1

c = 50 ((R1
c)
−1/2 = 0.1414) while for (EP2) of the welfare optimization problem

is R2
c = 100 ((R2

c)
−1/2 = 0.1). (Right) ∆η calculated using two methods: Method one is the

method stated in Thm. 4 (ii); Method two is the definition ∆η(R) = η∗g(R)− η∗w(R).

where C(v) is defined in (17) and α = 1, 2. When α = 1, it is the problem (15)-(17), while
when α = 2, it is the problem (24)-(25). These results are obtained numerically using the
AUTO software.

For the numerical computation, we sample three uniformly distributed frequencies: ω1 =
0.95, ω2 = 1.00 and ω3 = 1.05. The traveling wave speed is set at the mean of frequencies,
i.e., a = E[ω] = 1.

Relationship of η with R We compare the average cost (Eω[η∗g ] for (EP1) and η∗w for
(EP2)) obtained from solving the two nonlinear eigenvalue problems using AUTO. For (EP1),
we know η∗g(ω, a) = λ∗(ω, a) from lemma 3. For (EP2), we know η∗w from lemma 4. The results
are depicted in Fig. 3 (Left). There are two critical points in the figure: One is R1

c for (EP1)
and the other is R2

c for (EP2). When R > R2
c (R−1/2 < (R2

c)
−1/2), we obtain the incoherence

solution for both problems. When R < R1
c (R−1/2 > (R1

c)
−1/2), we obtain the synchrony

solution for both problems. The figure shows Eω[η∗g ] ≥ η∗w. The equality holds when both are
in incoherence solution, i.e., R > R2

c .

Relationship of ∆η with R We calculate the difference of the average cost (efficiency
loss) ∆η for the case of R < R1

c . The difference is calculated by two methods. One is the
method stated in Thm. 4 (ii) and the other is the definition. The results are depicted in Fig. 2
(Right). It shows that the formula for ∆η(R) in Thm. 4 is quite accurate, and the solution of
(VG∞) is always inefficient except in the incoherent regime. From the numerics, we obtain that
∆η/η∗w < 21.5%.
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Figure 3: (Left) The bifurcation diagram in terms of the average cost Eω[η∗] for two eigenvalue
problems (EPα). The results are for σ2 = 0.1 and a = 1. The critical value of R for (EP1)
of the game problem is R1

c = 33.33 while for (EP2) of the welfare optimization problem is
R2

c = 66.66. (Right) ∆η calculated using two methods: Method one is the method stated in
Thm. 4 (ii); Method two is the definition ∆η(R) = Eω[η∗g ](R)− η∗w(R).

6 Conclusions

Quantification of efficiency loss is an important issue in the design of engineered multi-agent
systems. While there has been prior work in static and deterministic regimes, in this paper,
we provide results for a class of stochastic dynamic game-theoretic models. The analysis is
based on the consideration of an idealized mean field limit model. Via variational techniques,
nonlinear eigenvalue problems are introduced for the game-theoretic and welfare optimization
problems, respectively. The two eigenvalue problems are shown to exhibit a simple relationship,
which is then used to obtain a tractable expression for the efficiency loss. Local bounds on
efficiency loss are derived by using bifurcation theory techniques in the homogeneous frequency
case. The bounds are verified by using numerical techniques for the homogeneous case as well
as the heterogeneous case.

Given the inherent challenge in developing efficiency estimates, our results are naturally
characterized by some limitations. For instance, our analysis is restricted to a subclass of
traveling wave solutions (as specified by Assumption 2). We also discuss conditions on the
cost functions under which such solutions are known to exist (Assumption 1). While we cannot
yet claim whether the existence of a MFE implies that the cooperative control problem admits
a solution, our results show that within the regime of interest, solutions to both problems exist
and can indeed be compared. This is a subject of continuing investigation.
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7 Appendix

7.1 Proof of Lemma 1

Proof. Under Assumption 2, the Eqn. (11b) can be written as

(ω − a)∂θp = −∂θ[pu] +
σ2

2
∂2

θθp.

Integrating both sides of the equation with respect to θ,

u =
σ2

2
∂θp

p
+ (a− ω) +

K

p
, (48)

where K is a function of ω and is obtained as follows. Integrating both sides of the resulting
equation (48) from 0 to 2π with respect to θ again, we obtain∫ 2π

0
u dθ =

∫ 2π

0

σ2

2
∂θ ln p dθ + K

∫ 2π

0

1
p

dθ + (a− ω)2π.

From the assumption that h (thus u) and p are 2π-periodic in θ,

0 = 0 + K

∫ 2π

0

1
p

dθ + (a− ω)2π ⇒ K =
(ω − a)2π∫ 2π

0
1
p dθ

. (49)

Finally, we get the result (7) by substituting K in (49) back to (48).

7.2 Proof of Lemma 2

We consider the functional I[v] = I1[v] + I2[v] + I3[v] where

I1[v] =
∫ 2π

0
c̄v2 dθ,

I2[v] =
∫ 2π

0

(
Rσ4

2
(∂θv)2 − λv2

)
dθ,

I3[v] =
∫ 2π

0

(
R

2
(ω − a)2v2

(
1− 2π

v2
∫

v−2

)2
)

dθ,

and derive its first variation. For I1[v],

DI1[v] · v′ =
∫ 2π

0
2c̄v · v′ dθ. (50)

For I2[v],

DI2[v] · v′ =
∫ 2π

0

(
−Rσ4∂2

θθv · v′ − 2λv · v′
)
dθ. (51)
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A straightforward calculation gives,

DI3[v] · v′ = lim
ε→0

I3[v + εv′]− I3[v]
ε

=
∫ 2π

0
R(ω − a)2

1−

(
2π

v2
∫

1
v2

)2
 v · v′ dθ (52)

Using (50)-(52), we have obtain the nonlinear problem (15). Finally, (16) is the same constraint
as (14).

7.3 Proof of Lemma 3

Proof. The proof of the first half is same as Lemma 2. It remains to show that λ∗(ω, a) =
η∗g(ω, a). Multiplying both sides of (15) with Rσ4v∗

2 and integrating from 0 to 2π with respect
to θ, we obtain∫ 2π

0

[
Rσ4

2
v∗∂2

θθv
∗ + (λ∗ − c̄∗)(v∗)2

− R

2
(ω − a)2

(
1−

(
2π

(v∗)2
∫

(v∗)−2

)2
)

(v∗)2
]

dθ = 0.

Because
∫ 2π
0 (v∗)2 dθ = 1,

λ∗ =
∫ 2π

0

[
− Rσ4

2
v∗∂2

θθv
∗ + c̄∗(v∗)2 +

R

2
(ω − a)2

(
1−

(
2π

(v∗)2
∫

(v∗)−2

)2
)

(v∗)2
]

dθ

= −Rσ4

2
v∗∂θv

∗
∣∣∣∣2π

0

+
∫ 2π

0

Rσ4

2
(∂θv

∗)2 dθ

+
∫ 2π

0

[
c̄∗(v∗)2 +

R

2
(ω − a)2

(
1−

(
2π

(v∗)2
∫

(v∗)−2

)2
)

(v∗)2
]

dθ

=
∫ 2π

0

[
Rσ4

2
(∂θv

∗)2 + c̄∗(v∗)2 +
R

2
(ω − a)2

(
1−

(
2π

(v∗)2
∫

(v∗)−2

)2
)

(v∗)2
]

dθ

=
∫ 2π

0

[
Rσ4

2
(∂θv

∗)2 + c̄∗(v∗)2 +
R

2
(ω − a)2

(
1− 2π

(v∗)2
∫

(v∗)−2

)2

(v∗)2
]

dθ (53)

where the second equality is obtained through integration by parts of the first term, and the
third equality is obtained because v∗ is periodic function with period 2π. From definition (13),
the right hand side of (53) is η∗g(ω, a).

7.4 Proof of Proposition 1

Proof. (i) Let (h, p, η∗) be a solution to the PDE (11a)-(11c). Then the optimal control is
given by u∗ = − 1

R∂θh. We have shown that u∗ also satisfies (7). Therefore, we obtain

∂θh = −Rσ2

2
∂θ ln p−R(a− ω)

(
1− 2π

p
∫

p−1

)
. (54)
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Taking partial derivatives with respect to θ on both sides of (54), we obtain

∂2
θθh = −Rσ2

2
p∂2

θθp− (∂θp)2

p2
−R(a− ω)

2π

p
∫

p−1

∂θp

p
. (55)

Let v =
√

p, then

∂θh = −Rσ2 ∂θv

v
−R(a− ω)

(
1− 2π

v2
∫

v−2

)
,

∂2
θθh = −Rσ2 ∂2

θθv

v
+ Rσ2

(
∂θv

v

)2

− 2R(a− ω)
2π

v2
∫

v−2

∂θv

v
.

(56)

From the Assumption 2 and Eqn. (11a),

(ω − a)∂θh =
1

2R
(∂θh)2 − c̄ + η∗ − σ2

2
∂2

θθh. (57)

Substituting (56) into (57), we obtain the left hand side (LHS) of (57) as

−Rσ2(ω − a)
∂θv

v
+ R(ω − a)2

(
1− 2π

v2
∫

v−2

)
,

and the right hand side (RHS) of (57) as

Rσ4

2
∂2

θθv

v
+

R

2
(ω − a)2

(
1− 2π

v2
∫

v−2

)2

−Rσ2(ω − a)
∂θv

v
+ (η∗ − c̄).

So Eqn. (57) becomes

0 =
Rσ4

2
∂2

θθv

v
+

R

2
(ω − a)2

(
1− 2π

v2
∫

v−2

)2

−R(ω − a)2
(

1− 2π

v2
∫

v−2

)
+ (η∗ − c̄),

=
Rσ4

2
∂2

θθv

v
− R

2
(ω − a)2

(
1− 2π

v2
∫

v−2

)(
1 +

2π

v2
∫

v−2

)
+ (η∗ − c̄) (58)

Multiplying both sides of (58) with 2v
Rσ4 , one obtains the nonlinear equation (15). Finally,

(16) is just the constraint for density function p = v2, and (17) is the same as (11c) under
Assump 2.

(ii) First multiplying both sides of (21) with p
R and do a partial derivative with respect to

θ, one obtains

∂θ

[ p

R
(∂θh)

]
= −σ2

2
∂2

θθp + ∂θ

[
(ω − a)(1− 2π

p
∫ 2π
0 p−1 dθ

)p

]
,

= −σ2

2
∂2

θθp + (ω − a)∂θ

[
p− 2π∫ 2π

0 p−1 dθ

]
,

= −σ2

2
∂2

θθp + (ω − a)∂θp,
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which gives

(ω − a)∂θp =
1
R

∂θ [p(∂θh)] +
σ2

2
∂2

θθp.

Since p(θ, t;ω) = v2(θ − at;ω),

∂tp + ω∂θp = (ω − a)∂θp =
1
R

∂θ [p(∂θh)] +
σ2

2
∂2

θθp,

which gives (11b).

Next, substitutting p(θ, t;ω) = v2(θ − at;ω) into (21), one obtains

∂θh = −Rσ2 ∂θv

v
+ R(ω − a)

(
1− 2π

v2
∫ 2π
0 v−2 dθ

)
. (59)

So

∂th + ω∂θh = (ω − a)∂θh = −Rσ2(ω − a)
∂θv

v
+ R(ω − a)2

(
1− 2π

v2
∫ 2π
0 v−2 dθ

)
, (60)

(∂θh)2 = R2σ4

(
∂θv

v

)2

+ R2(ω − a)2
(

1− 2π

v2
∫ 2π
0 dθ

)2

− 2R2σ2(ω − a)
∂θv

v

(
1− 2π

v2
∫ 2π
0 v−2 dθ

)
, (61)

∂2
θθh = −Rσ2 ∂2

θθv

v
+ Rσ2

(
∂θv

v

)2

+ 2R(ω − a)
2π

v2
∫ 2π
0 v−2 dθ

∂θv

v
. (62)

Multiplying both sides of (61) with 1
2R , those of (62) with −σ2

2 and adding them together,
one obtains

1
2R

(∂θh)2 − σ2

2
∂2

θθh =
Rσ4

2
∂2

θθv

v
+

R

2
(ω − a)2

(
1− 2π

v2
∫ 2π
0 v−2 dθ

)2

−Rσ2(ω − a)
∂θv

v
.

(63)

Multiplying both sides of (15) with Rσ4

2v , one obtains

Rσ4

2
∂2

θθv

v
+ η∗ − c̄− R

2
(ω − a)2

1−

(
2π

v2
∫ 2π
0 v−2 dθ

)2
 = 0,

which gives

Rσ4

2
∂2

θθv

v
= −(η∗ − c̄) +

R

2
(ω − a)2

1−

(
2π

v2
∫ 2π
0 v−2 dθ

)2
 . (64)
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Substituting (64) into (63), one obtains

1
2R

(∂θh)2 − σ2

2
∂2

θθh = −(η∗ − c̄) + R(ω − a)2
(

1− 2π

v2
∫ 2π
0 v−2 dθ

)
−Rσ2(ω − a)

∂θv

v
,

= −(η∗ − c̄) + ∂th + ω∂θh,

where the last equality comes from (60). Rearranging the last equation, one obtains

∂th + ω∂θh =
1

2R
(∂θh)2 − c̄ + η∗ − σ2

2
∂2

θθh, (65)

which gives (11a). Finally, (11c) is obtained from (17) under Assumption 2.

7.5 Proof of Lemma 4

Proof. The Euler-Lagrange equation (24) is obtained from considering the first variation of
(22)-(23), which can be derived in a fashion similar to that in Lemma 2. Comparing equation
(22) with (13), the only difference in the integrand is the first term: the latter is c̄v2 and the
former is C[v]v2. So we derive its first variation here as

DI1[v] · v′ =
∫

Ω

∫ 2π

0
2C[v]v · v′ dθg(ω) dω (66)

+
∫

Ω

∫ 2π

0

(
v2(θ;ω)

∫
Ω

∫ 2π

0
c•(θ − ϑ)2v(ϑ;ω′) · v′(ϑ;ω′) dϑg(ω′) dω′

)
dθg(ω) dω

(67)

=: DI11[v] · v′ + DI12[v] · v′. (68)

Note the integrand of (66) is same as that of (50). Since c•(·) is even, (67) can be written as

DI12[v] · v′ =
∫

Ω

∫ 2π

0

(
v2(θ;ω)

∫
Ω

∫ 2π

0
c•(ϑ− θ)2v(ϑ;ω′) · v′(ϑ;ω′) dϑg(ω′) dω′

)
dθg(ω) dω

(69)

=
∫

Ω

∫ 2π

0

(
v2(ϑ;ω′)

∫
Ω

∫ 2π

0
c•(θ − ϑ)2v(θ;ω) · v′(θ;ω) dθg(ω) dω

)
dϑg(ω′) dω′

(70)

=
∫

Ω

∫ 2π

0

(∫
Ω

∫ 2π

0
c•(θ − ϑ)v2(ϑ;ω′) dϑg(ω′) dω′

)
2v(θ;ω) · v′(θ;ω) dθg(ω) dω

(71)

=
∫

Ω

∫ 2π

0
C[v](θ)2v(θ;ω) · v′(θ;ω) dθg(ω) dω = DI11[v] · v′, (72)

where (70) is obtained by switching variable θ with ϑ and ω with ω′ in (69), (71) is obtained
by rearrangement of (70), and (72) is obtained from definition of C[v] in (17). So we obtain

DI1[v] · v′ =
∫

Ω

∫ 2π

0
4C[v]v · v′ dθg(ω) dω,
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where the integrand is as twice as that in (50), which leads to the difference between (24) and
(15).

Multiplying both sides of (24) by σ4Rv
2 and integrating from 0 to 2π, we obtain the following:

λ∗(ω, a)=
∫ 2π

0

Rσ4

2
(∂θv

∗)2 + 2C[v∗](v∗)2 +
R

2
(ω − a)2

(
1−

(
2π

(v∗)2
∫

(v∗)−2

)2
)

(v∗)2 dθ

=
∫ 2π

0

Rσ4

2
(∂θv

∗)2 + 2C[v∗](v∗)2 +
R

2
(ω − a)2

(
1− 2π

(v∗)2
∫

(v∗)−2

)2

(v∗)2 dθ.

Taking expectations on both sides, we obtain the result (26).

7.6 Proof of Lemma 5

The equation (32) is re-written as

σ4R∂2
θθv + 2

(
λ− α

∫ 2π

0
c•(θ, ϑ)v2(ϑ) dϑ

)
v = 0. (73)

We substitute the expansion (36) into (73) and the normalization condition
∫

v2 dθ = 1, and
collect the terms according to different orders of x.

At O(1), we have the steady state solution

v0 =
1√
2π

, λ0 = αC•
0 =

α

2π

∫ 2π

0
c•(θ − ϑ) dϑ.

At O(x),

0 = σ4r0∂
2
θθv1 + 2v0

(
λ1 − α

∫ 2π

0
c•(θ − ϑ)2v0v1(ϑ) dϑ

)
, (74)

0 =
∫ 2π

0
v1(θ) dθ. (75)

Suppose we have the Fourier expansion for the function v1(θ)

v1(θ) =
∑

k

v1ke
ikθ. (76)

Substitute (76) into (75), ∫ 2π

0
v10 dθ = 0 ⇒ v10 = 0.

Substitute (76) into (74) to obtain∑
k

(
−k2σ4r0 − 8απv2

0C
•
k

)
v1ke

ikθ + 2v0λ1 = 0.
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We collect the terms with respect to eikθ. When k = 0,

−8απv2
0C

•
0v10 + 2v0λ1 = 0 ⇒ λ1 = 0 since v10 = 0.

When k = 1, (−σ4r0 − 8απv2
0C

•
1 )v11 = 0. If v11 6= 0,

r0 = −8απv2
0C

•
1

σ4
=

α

2σ4
= Rα

c .

When k ≥ 2, C•
k = 0,

−k2σ4r0v1k = 0 ⇒ v1k = 0.

When k < 0, it is similar as k > 0. The existence of bifurcation implies v1 6= 0, so v11 =
v̄1,−1 6= 0. So we obtain

v1 = v11e
iθ + c.c = 2|v11| cos(θ + ∠v11), (77)

where |v11| and ∠v11 are the amplitude and phase angle, respectively, of v11.
At O(x2),

σ4r0∂
2
θθv2 + σ4r1∂

2
θθv1

+2v0

(
λ2 − α

∫ 2π

0
c•(θ − ϑ)(v2

1(ϑ) + 2v0v2(ϑ)) dϑ

)
−4αv0v1(θ)

∫ 2π

0
c•(θ − ϑ)v1(ϑ) dϑ = 0, (78)∫ 2π

0
v2
1(θ) + 2v0v2(θ) dθ = 0. (79)

Suppose v2(θ) also has the Fourier expansion

v2(θ) =
∑

k

v2ke
ikθ. (80)

Substitute (76) and (80) into (79),

v11v1,−1 + v0v2,0 = 0, or v2,0 = −v11v1,−1

v0
. (81)

Substitute (76) and (80) into (78),

∞∑
k=−∞

{
(−k2σ4r0 − 8απv2

0C
•
k)v2k − 4απv0C

•
k

( ∑
m+l=k

v1mv1l

)

−k2σ4r1v1k − 8απv0

( ∑
m+l=k

v1mv1lC
•
l

)}
eikθ + 2v0λ2 = 0.
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We collect the terms of eikθ for different values of k. When k = 0,

0 = −8απv2
0C

•
0v20 − 4απv0C

•
0 (2v11v1,−1)

− 8απv0

(
v11v1,−1C

•
−1 + v1,−1v11C

•
1

)
+ 2v0λ2,

⇒ − 8απv2
0C

•
0v2,0 + 2v0λ2 = 0,

⇒ λ2 =
8απv2

0C
•
0v2,0

2v0
= 4απv0C

•
0

(
−v11v1,−1

v0

)
= −4απC•

0v11v1,−1 = −απv11v1,−1

When k = 1, −σ4r1v11 = 0, ⇒ r1 = 0. When k = 2,

−4σ4r0v2,2 − 8απv0v
2
11C

•
1 = 0, ⇒ v2,2 = −2απv0

σ4r0
v2
11C

•
1

= 1
2πv0v

2
11.

When k > 2, v2k = 0. For k < 0, it is similar. So we obtain

v2 = 1
2v20 + v21e

iθ + v22e
i2θ + c.c

= v20 + v0π|v11|2 cos 2(θ + ∠v11) + 2|v21| cos(θ + ∠v21) (82)

At O(x3),

σ4r0∂
2
θθv3 + σ4r2∂

2
θθv1

+2v0

(
λ3 − α

∫
c•(θ − ϑ)(2v0v3(ϑ) + 2v1(ϑ)v2(ϑ)) dϑ

)
+2v1(θ)

(
λ2 − α

∫
c•(θ − ϑ)(v2

1(θ) + 2v0v2(ϑ)) dϑ

)
−4αv0v2(θ)

∫
c•(θ − ϑ)v1(ϑ) dϑ = 0, (83)∫

v0v3(θ) + v1(θ)v2(θ) dθ = 0. (84)

Suppose v3(θ) has the Fourier expansion

v3(θ) =
∑

k

v3ke
ikθ. (85)

Substitute (76), (80) and (85) into (84),

v0v3,0 + v11v2,−1 + v1,−1v2,1 = 0.
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Substitute (76), (80) and (85) into (84),∑
k

{
(−k2)σ4r0v3k − σ4r2k

2v1k + 2λ2v1k

− 8απv0C
•
k

( ∑
m+l=k

v1mv2l + v0v3k

)

− 4απ
∑

m+l=k

v1mC•
l

( ∑
a+b=l

v1av1b + 2v0v2l

)

− 8απv0

∑
m+l=k

v2mC•
l v1l

}
eikθ + 2v0λ3 = 0. (86)

We collect the terms of eikθ for different values of k. When k = 0,

0 =− 8απv0C
•
0 (v11v2,−1 + v1,−1v21 + v0v30)

− 4απ
(
v11C

•
−1(2v0v2,−1) + v1,−1C

•
12v0v21

)
− 8απv0(v21C

•
−1v1,−1 + v2,−1C

•
1v11 + 2v0λ3,

⇒ λ3 = απ(v11v2,−1 + v1,−1v2,1).

When k = 1,

0 =− σ4r0v31 − σ4r2v11 + 2λ2v11

− 8απv0(2C•
1v11v20 + 2C•

1v1,−1v22 + C•
1v0v31),

⇒ r2 = − 7α

2σ4
πv11v1,−1.

In all, we obtain the formula

R = r0 + x2r2 + o(x2) = r0 −
7α

2σ4
π|v11|2x2 + o(x2), (87)

λ = λ0 + x2λ2 + o(x2) = λ0 − απ|v11|2x2 + o(x2), (88)

v = v0 + xv1 + x2v2 + o(x2)

= v0 + x|v11|2 cos(θ + ∠v11) + x2(−
√

2π|v11|2

+ πv0|v11|2 cos 2(θ + ∠v11) + 2|v21| cos(θ + ∠v11)) + o(x2)
= v0 + 2 cos(θ + ∠v11)|v11|x+(

−
√

2π + v0π cos 2(θ + ∠v11)
)
|v11|2x2 + o(x2). (89)
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